Answer:
only power plants use fossil fuels to transform energy
<span>change in velocity = final velocity - initial velocity = v - u
for comet:
uc = initial velocity of comet (before impact)
vc = final velocity of comet
mc= mass of comet
uc = 40000 kmph
vc = ?
mc= 10 x 10^14 kg
for probe:
up = initial velocity of probe (before impact)
vp = final velocity of probe
mp= mass of probe
up= 37000 kmph
vp= ?
mp= 372 kg
Now,
by principle of conservation of momentum
(mc x uc) - (mp x up) = (mc x vc) + (mp x vp)
Since probe is in comet after collision, vp= vc = V
then,
(mc x uc) - (mp x up) = V (mc + mp )
V = [(mc x uc) - (mp x up)] / (mc + mp )
= ((10 × 10^14 × 40000) - (372 × 37000)) ÷ ((10 × 10^14) + 372)
= ???
then,
change in velocity of the comet = ??? - (40000) =
</span>
Answer:
The question was incomplete. Here is the complete question.
Explanation:
A helium-filled balloon escapes a child’s hand at sea level and 20.0C. When it reaches an altitude of 3600 m, where the temperature is 5.0∘C and the pressure only 0.68 atm, how will its volume compare to that at sea level?
The ideal gas equation:

P = absolute pressure
V = Volume of a gas
n = no of moles of a gas
R = ideal gas constant
T = Absolute temperature of a gas
For initial and final states:

= 1.4
Answer:
A. a parked bus
Explanation:
Because a parked bus probably has the most mass out of these 4 and as we know, mass is that quantity that is solely dependent upon the inertia of an object. The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.