13^12 + 11^12 + 8^12 = 384 It will cost 384 dollars for all 12 uniforms
Answer:
a) ![\mathrm{E}[\mathrm{T}]=\sum_{\mathrm{H}}^{5} \frac{200}{101-i}](https://tex.z-dn.net/?f=%5Cmathrm%7BE%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7B%5Cmathrm%7BH%7D%7D%5E%7B5%7D%20%5Cfrac%7B200%7D%7B101-i%7D)
b) ![\mathrm{Var}[\mathrm{T}]=\sum_{k=1}^{5} \frac{(200)^{2}}{(101-i)^{2}}](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7Bk%3D1%7D%5E%7B5%7D%20%5Cfrac%7B%28200%29%5E%7B2%7D%7D%7B%28101-i%29%5E%7B2%7D%7D)
Step-by-step explanation:
Given:
The lifetimes of the individual items are independent exponential random variables.
Mean = 200 hours.
Assume, Ti be the time between (
)st and the
failures. Then, the
are independent with
being exponential with rate
Therefore,
a) ![E[T]=\sum_{i=1}^{5} E\left[\tau_{i}\right]](https://tex.z-dn.net/?f=E%5BT%5D%3D%5Csum_%7Bi%3D1%7D%5E%7B5%7D%20E%5Cleft%5B%5Ctau_%7Bi%7D%5Cright%5D)

![\therefore \mathrm{E}[\mathrm{T}]=\sum_{\mathrm{H}}^{5} \frac{200}{101-i}](https://tex.z-dn.net/?f=%5Ctherefore%20%5Cmathrm%7BE%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7B%5Cmathrm%7BH%7D%7D%5E%7B5%7D%20%5Cfrac%7B200%7D%7B101-i%7D)

The variance is given by, ![\mathrm{Var}[\mathrm{T}]=\sum_{i=1}^{5} \mathrm{Var}[T]](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7Bi%3D1%7D%5E%7B5%7D%20%5Cmathrm%7BVar%7D%5BT%5D)
![\therefore \mathrm{Var}[\mathrm{T}]=\sum_{k=1}^{5} \frac{(200)^{2}}{(101-i)^{2}}](https://tex.z-dn.net/?f=%5Ctherefore%20%5Cmathrm%7BVar%7D%5B%5Cmathrm%7BT%7D%5D%3D%5Csum_%7Bk%3D1%7D%5E%7B5%7D%20%5Cfrac%7B%28200%29%5E%7B2%7D%7D%7B%28101-i%29%5E%7B2%7D%7D)
Answer:
x=16
Step-by-step explanation:
We are given that

we have to solve this equation for x
in order to do that we need to isolate x first
hence
subtracting 11 from both sides we get


Now we square on both sides we get



hence x =16
Here's your answer, I hope you understand this. 30.9cm
Descending order...largest to smallest
the largest one is the one with the biggest exponent
so the first term is : 7z^4