Answer:
(a) 91 kg (2 s.f.) (b) 22 m
Explanation:
Since it is stated that a constant horizontal force is applied to the block of ice, we know that the block of ice travels with a constant acceleration and but not with a constant velocity.
(a)

Subsequently,

*Note that the equations used above assume constant acceleration is being applied to the system. However, in the case of non-uniform motion, these equations will no longer be valid and in turn, calculus will be used to analyze such motions.
(b) To find the final velocity of the ice block at the end of the first 5 seconds,

According to Newton's First Law which states objects will remain at rest
or in uniform motion (moving at constant velocity) unless acted upon by
an external force. Hence, the block of ice by the end of the first 5
seconds, experiences no acceleration (a = 0) but travels with a constant
velocity of 4.4
.

Therefore, the ice block traveled 22 m in the next 5 seconds after the
worker stops pushing it.
Pitch
Explanation:
The pitch of a sound wave is the perceived frequency of a sound wave.
The quality of sound that makes it discernible to the ear is the pitch.
- Sound wave is a longitudinal wave that is transmitted by series of rarefaction and compression.
- Pitch helps to distinguish between the different sound qualities.
- Pitch is how high or low sound is perceived.
learn more:
Pitch brainly.com/question/9772227
Sound wave brainly.com/question/2845448
#learnwithBrainly
So the acceleration of gravity is 9.8 m/s so that’s how quickly it will accelerate downwards. You can use a kinematic equation to determine your answer. We know that initial velocity was 19 m/s, final velocity must be 0 m/s because it’s at the very top, and the acceleration is -9.8 m/s. You can then use this equation:
Vf^2=Vo^2+2ax
Plugging in values:
361=19.6x
X=18 m
Answer:
Temperature, T = 3.62 kelvin
Explanation:
It is given that,
Total number of gas molecules, 
Her body is converting chemical energy into thermal energy at a rate of 125 W, P = 125 W
Time taken, t = 6 min = 360 s
Energy of a gas molecules is given by :

, k is Boltzmann constant


T = 3.62 K
So, the temperature increases by 3.62 kelvin. Hence, this is the required solution.