V2 = 4.4579 L
Since pressure is constant, use Charle’s law.
Charles's law, a statement that the volume occupied by a fixed amount of gas is directly proportional to its absolute temperature, if the pressure remains constant.
V(olume) 1 = V(olume) 2
————— —————
T(emperature) 1 T(emperature)2
4.00 L = V2
———- ———
297 K 331 K
Cross multiply
(4.00 L x 331 K) = (297 K x V2)
Simplify
1324 L/K = 297 K x V2
Isolate V2 by dividing out 297 K
1324 L/K = V2
————
297 K
(This cancels out the kelvin and leaves you with Liters as the volume measure)
V2 = 4.4579 L
Round to significant digits if required
(1) You must find the point of equilibrium between the two forces,
<span>G * <span><span><span>MT</span><span>ms / </span></span><span>(R−x)^2 </span></span>= G * <span><span><span>ML</span><span>ms / </span></span><span>x^2
MT / (R-x)^2 = ML / x^2
So,
x = R * sqrt(ML * MT) - ML / (MT - ML)
R = is the distance between Earth and Moon.
</span></span></span>The result should be,
x = 3.83 * 10^7m
from the center of the Moon, and
R - x = 3.46*10^8 m
from the center of the Earth.
(2) As the distance from the center of the Earth is the number we found before,
d = R - x = 3.46*10^8m
The acceleration at this point is
g = G * MT / d^2
g = 3.33*10^-3 m/s^2
A) the electrode at which oxidation takes place
Answer:
b. 600,000 J
Explanation:
Applying the law of conservation of energy,
The thermal energy created = Kinetic energy of the suv.
Q' = 1/2(mv²)............... Equation 1
Where Q' = Thermal energy, m = mass of the suv, v = velocity of the suv.
From the question,
Given: m = 3000 kg, v = 20 m/s
Substitute these values into equation 1
Q' = 1/2(3000×20²)
Q' = 600000 J
Hence the right option is b. 600,000 J
Well, the tension in the thread will probably quadruple, but the hanging body will continue to just hang there.
The question gives us no evidence that it is doing any oscillating, and there's no reason for it to start just because it suddenly got heavier.