1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anzhelika [568]
2 years ago
8

A car is traveling at 118 km/h when the driver sees an accident 85 m ahead and slams on the brakes. What minimum constant decele

ration is required to stop the car in time to avoid a pileup
Physics
1 answer:
Leya [2.2K]2 years ago
5 0

Answer:

The constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²

Explanation:

From the question, the car is traveling at 118 km/h, that is the initial velocity, u = 118km/h

The distance between the car and the accident at the moment when the driver sees the accident is 85 m, that is s = 85 ,

Since the driver slams on the brakes and the car will come to a stop, then the final velocity, v = 0 km/h = 0 m/s

First, convert 118 km/h to m/s

118 km/h = (118 × 1000) /3600 = 32.7778 m/s

∴ u = 32.7778 m/s

Now, to determine the deceleration, a, required to stop,

From one of the equations of motion for linear motion,

v² = u² + 2as

Then

0² = (32.7778)² + 2×a×85

0 = 1074.3841 + 170a

∴ 170a = - 1074.3841

a = - 1074.3841 / 170

a = - 6.3199

a ≅ - 6.32 m/s²

Hence, the constant minimum deceleration required to stop the car in time to avoid pileup is 6.32 m/s²

You might be interested in
Paano ka nakatutulong upang maiwasan ang suliranin ukol sa climate change​
Nostrana [21]

Answer:

hi what is your question?? say in English please

7 0
2 years ago
What happens when an object with a lower density is placed in a container with an
maksim [4K]
The only thing that definitely happens in every such case is:
The container becomes heavier.
5 0
3 years ago
The dragster has a mass of 1.3 Mg and a center of mass at G. A parachute is attached at C provides a horizontal braking force of
adell [148]

Answer:

The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is  16.33 m/s²

Explanation:

The additional information to the question is embedded in the diagram attached below:

The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m

Balancing the equilibrium about point A;

F(1.1) - mg (1.25) = ma_a (0.35)

1.8v^2(1.1) - 1200(9.8)(1.25) = 1200a(0.35)

1.8v^2(1.1) - 14700 = 420 a   ------- equation (1)

F_x = ma_x \\ \\ = 1.8v^2 = 1200 \ a             --------- equation (2)

Replacing equation 2 into equation 1 ; we have :

{1.1 * 1200 \ a} - 14700 = 420 a

1320 a - 14700 = 420 a

1320 a -  420 a =14700

900 a = 14700

a = 14700/900

a = 16.33 m/s²

The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is  16.33 m/s²

5 0
3 years ago
Estimate the final temperature of a mole of gas at 200.0 atm and 19.0°C as it is forced through a porous plug to a final pressur
Yanka [14]

Answer : The final temperature of gas is 266.12 K

Explanation :

According to the Joule-Thomson experiment, it states that when a gas is expanded adiabatically from higher pressure region to lower pressure region, the change in temperature with respect to change in pressure at constant enthalpy is known as Joule-Thomson coefficient.

The formula will be:

\mu_{J,T}=(\frac{dT}{dP})_H

or,

\mu_{J,T}=(\frac{dT}{dP})_H\approx \frac{\Delta T}{\Delta P}

As per question the formula will be:

\mu_{J,T}=\frac{T_2-T_1}{P_2-P_1}   .........(1)

where,

\mu_{J,T} = Joule-Thomson coefficient of the gas = 0.13K/atm

T_1 = initial temperature = 19.0^oC=273+19.0=292.0K

T_2 = final temperature = ?

P_1 = initial pressure = 200.0 atm

P_2 = final pressure = 0.95 atm

Now put all the given values in the above equation 1, we get:

0.13K/atm=\frac{T_2-292.0K}{(0.95-200.0)atm}

T_2=266.12K

Therefore, the final temperature of gas is 266.12 K

5 0
3 years ago
14. If the spring constant of a simple harmonic oscillator is doubled, by what factor will the mass of the system need to change
klio [65]

Lets se

And

\\ \rm\Rrightarrow T=2\pi\sqrt{\dfrac{m}{k}}

\\ \rm\Rrightarrow \sqrt{k}T=2\pi\sqrt{m}

So

\\ \rm\Rrightarrow k\propto m

If spring constant is doubled mass must be doubled

8 0
2 years ago
Other questions:
  • Pions have a half-life of 1.8 x 10^-8 s. A pion beam leaves an accelerator at a speed of 0.8c. What is the expected distance ove
    10·1 answer
  • There is a simple pattern for determining if a binary number is odd. what is it and why does this pattern occur
    12·2 answers
  • What are materials used in photosynthesis??
    7·1 answer
  • Nerve impulses are carried along axons, the elongated fibers that transmit neural signals. We can model an axon as a tube with a
    5·1 answer
  • During the developing of a TLC plate, it is common to place a cover on the chromatography chamber and have a piece of moist filt
    8·1 answer
  • If you measure a change in temperature, then the _____.
    7·1 answer
  • HELP PLS!<br> (LOOK AT THE PICTURE)
    13·1 answer
  • Coal is an example of kinetic or potential energy
    8·2 answers
  • A roll of kitchen aluminum foil is 30 cm wide by 22 m long (if you unroll it). If the foil is 0.15 mm thick, and the specific we
    11·1 answer
  • A solid weighs 0.9N in air and 0.2N in a liquid of density 700kg/m^3. Calculate
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!