1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ryzh [129]
2 years ago
12

A 64 kg swimmer jumps, with a velocity of 4.2 m/s, off the front of a 25 kg kayak when the kayak is moving forward at a velocity

of 3.2 m/s. What is the velocity of the kayak after the swimmer jumps off
Physics
1 answer:
Crank2 years ago
8 0

Answer:

3.88m/s

Explanation:

Using the law of conservation of momentum

m1u1+m2u2 = (m1+m2)v

m1 and m2 are the masses

u1 and 2 are the initial velocities

v is the final velocity

Given

m1 = 64kg

u1 = 4.2m/s

m2 = 25kg

u2 = 3.2m/s

Required

Final velocity v

Substitute the given values into the formula

64(4.2)+25(3.2) = (65+25)v

268.8+80 = 90v

348.8 = 90v

v = 348.8/90

v = 3.88m/s

Hence the velocity of the kayak after the swimmer jumps off is 3.88m/s

You might be interested in
A positively-charged object with a mass of 0.129 kg oscillates at the end of a spring, generating ELF (extremely low frequency)
9966 [12]

Answer:308 N/m

Explanation:

Given

mass\left ( m\right )=0.129 kg

wavelength\left ( \lambda \right )=3.86\times 10^7

We know frequency =\frac{c}{\lambda }=\frac{3\times 10^8}{3.86\tmes 10^7}

f=7.772 Hz

As the frequency of radio waves is same as the frequency at which object oscillates

f=\frac{1}{2\pi }\sqrt{\frac{k}{m}}

7.772=\frac{1}{2\pi }\sqrt{\frac{k}{0.129}}

7.772\times 2\times \pi =\sqrt{\frac{k}{0.129}}

k=307.70\approx 308 N/m

7 0
3 years ago
Listed in the Item Bank are some important labels for sections of the image below. To find out more information about labels, so
gizmo_the_mogwai [7]

Answer:reactant,active site,enzyme below,substrate,products

Explanation:

5 0
3 years ago
Consider a semi-infinite (hollow) cylinder of radius R with uniform surface charge density. Find the electric field at a point o
VikaD [51]

Answer:

For the point inside the cylinder: E = \frac{\sigma R}{2\epsilon_0}\frac{1}{\sqrt{R^2 + 4x_0^2}}

For the point outside the cylinder: E = \frac{\sigma R}{2\epsilon_0}\frac{1}{\sqrt{R^2 + x_0^2}}

where x0 is the position of the point on the x-axis and σ is the surface charge density.

Explanation:

Let us assume that the finite end of the cylinder is positioned at the origin. And the rest of the cylinder lies on the (-x) axis, which is the vertical axis in this question. In the first case (inside the cylinder) we will calculate the electric field at an arbitrary point -x0. In the second case (outside), the point will be +x0.

<u>x = -x0:</u>

The cylinder is consist of the sum of the rings with the same radius.

First we will calculate the electric field at point -x0 created by the ring at an arbitrary point x.

We will also separate the ring into infinitesimal portions of length 'ds' where ds = Rdθ.

The charge of the portion 'ds' is 'dq' where dq = σds = σRdθ. σ is the surface charge density.

Now, the electric field created by the small portion is 'dE'.

dE = \frac{1}{4\pi\epsilon_0}\frac{\sigma Rd\theta}{R^2+x^2}

The electric field is a vector, and it needs to be separated into its components in order us to integrate it. But, the sum of horizontal components is zero due to symmetry. Every dE has an equal but opposite counterpart which cancels it out. So, we only need to take the component with the sine term.

dE = \frac{1}{4\pi\epsilon_0}\frac{\sigma Rd\theta}{R^2+x^2} \frac{x}{\sqrt{x^2+R^2}} = dE = \frac{1}{4\pi\epsilon_0}\frac{\sigma Rxd\theta}{(R^2+x^2)^{3/2}}

We have to integrate it over the ring, which is an angular integration.

E_{ring} = \int{dE} = \frac{1}{4\pi\epsilon_0}\frac{\sigma Rx}{(R^2+x^2)^{3/2}}\int\limits^{2\pi}_0 {} \, d\theta  = \frac{1}{4\pi\epsilon_0}\frac{\sigma Rx}{(R^2+x^2)^{3/2}}2\pi = \frac{1}{2\epsilon_0}\frac{\sigma Rx}{(R^2+x^2)^{3/2}}

This is the electric field created by a ring a distance x away from the point -x0. Now we can integrate this electric field over the semi-infinite cylinder to find the total E-field:

E_{cylinder} = \int{E_{ring}} = \frac{\sigma R}{2\epsilon_0}\int\limits^{-\inf}_{-2x_0} \frac{x}{(R^2+x^2)^{3/2}}dx = \frac{\sigma R}{2\epsilon_0}\frac{1}{\sqrt{R^2 + 4x_0^2}}

The reason we integrate over -2x0 to -inf is that the rings above -x0 and below to-2x0 cancel out each other. Electric field is created by the rings below -2x0 to -inf.

<u>x = +x0: </u>

We will only change the boundaries of the last integration.

E_{cylinder} = \int{E_{ring}} = \frac{\sigma R}{2\epsilon_0}\int\limits^{-\inf}_{x_0} \frac{x}{(R^2+x^2)^{3/2}}dx = \frac{\sigma R}{2\epsilon_0}\frac{1}{\sqrt{R^2 + x_0^2}}

6 0
3 years ago
Particles 1 and 2 of charge q1 = q2 = +3.20 × 10−19 C are on a y axis at distance d = 17.0 cm from the origin. Particle 3 of cha
mel-nik [20]

Answer:

(a) 0.17 m

(b) 5.003 m

(c) 6.38 × 10^{-26} N

(d) 7.37 ×10^{-29} N

Explanation:

(a) The minimum value of x will occur when q3 = 0 m or at origin and q1, q2 are at 0.17 m so the distance between q3 and q1, q2 is 0.17 m, therefore the <em>minimum value of x= 0.17 m</em>.

(b) The maximum value of x will occur when q3 = 5 m because it is said in the question that 5 is the maximum distance travelled by q3. To find the hypotenuse i.e. the distance between q3 and q1,q2, we use Pythagoras theorem.

h^{2} = b^{2} + p^{2}

h^{2} = 5^{2} + 0.17^{2}   \\h = \sqrt{} 25.03\\h= 5.002 m

<em>Hence, the maximum distance is 5.002 m</em>

(c) For minimum magnitude we use the minimum distance calculated in (a)

Minimum Distance = 0.17 m

For electrostatic force=     F=\frac{kq1q2}{x^{2} }

F=\frac{9 x 10^{9} x3.2x10^{-19}x 6.4x10^{-19}  }{0.17^{2} }

F= 6.38×10^{-26} N

(d) For maximum magnitude, we use the maximum distance calculated in (b)

Maximum Distance = 5.002 m

Using the formula for electrostatic force again:

F =  \frac{9x10^{9}x3.2x10^{-19}x6.4x10^{-19}   }{5.002^{2} } }

F= 7.37×10^{-29 N

4 0
3 years ago
WHY ARE ALL GIRLS THE SAME, don't even say their not cause if you say that then I guess you don't have a life!!!!!​
Zinaida [17]
Because they are. it’s just how life works
6 0
2 years ago
Other questions:
  • A rocket is dropped out of an airplane at 100 m/s (downward). If the rocket fires causing an upward acceleration of Ct2 and it t
    12·1 answer
  • Research has found that the greatest risk of developing a major depression occurs between the ages of 15-24 and 35-44. Your age
    7·1 answer
  • An object of mass 11kg is falling in air and experiences a force due to air resistance of 35N. Determine the magnitude of net fo
    14·1 answer
  • Describe and give an example of a normal force
    13·1 answer
  • A 3.00-kg box that is several hundred meters above the earth’s surface is suspended from the end of a short vertical rope of neg
    13·1 answer
  • A 2.5kg object oscillates at the end of a vertically hanging light spring once every 0.65s .
    12·1 answer
  • g Determine the magnetic field midway between two long straight wires 2.0 cm apart in terms of the current I in one when the oth
    10·1 answer
  • What does Rockstrom mean by the need to "bend the curves"?
    9·1 answer
  • The color aftereffects phenomenon predicts that, after staring at a bright red rectangle for a period of time, you will see a __
    7·1 answer
  • The volume in the pump when the pump piston is all the way down represents the _______
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!