Gravity affects weight, it does not affect mass. Masses always remain the same. Newton's Second Law of Motion: Force = mass x acceleration The acceleration of an object is: a) directly proportional to the net force acting on the object. ... c) inversely proportional to the mass of the object.
Answer:
(a) the angular velocity at θ1 is 11.64 rad/s
(b) the angular acceleration is 0.12 rad/
(c) the angular position was the disk initially at rest is - 428.27 rad
Explanation:
Given information :
θ1 = 16 rad
θ2 = 76 rad
ω2 = 11 rad/s
t = 5.3 s
(a) The angular velocity at θ1
First, we use the angular motion equation for constant acceleration
Δθ = (ω1+ω2)t/2
θ2 - θ1 = (ω1+ω2)t/2
ω1 + ω2 = 2 (θ2 - θ1) / t
ω1 = (2 (θ2 - θ1) / t ) - ω2
= (2 (76-16) / 5.3) - 11
= 11.64 rad/s
(b) the angular acceleration
ω2 = ω1 + α t
α t = ω2 - ω1
α = (ω2 - ω1)/t
= (11.64 - 11) / 5.3
= 0.12 rad/
(c) the angular position was the disk initially at rest, θ0
at rest ω0 = 0
ω2^2 = ω01 t + 2 α Δθ
2 α Δθ = ω2^2
θ2 - θ0 = ω2^2 / 2 α
θ0 = θ2 - (ω2^2) / 2 α
= 76 - (
/ 2 x 0.12
= 76 - 504.16
= - 428.27 rad
Answer:
<h2><u>
The capacity or power to do work/ The ability to do work. </u></h2>
Explanation:
such as the capacity to move an object (of a given mass) by the application of force. Energy can exist in a variety of forms, such as electrical, mechanical, chemical, thermal, or nuclear, and can be transformed from one form to another
I hope this help:)
m = mass = 5 kg
= initial velocity = 100 m/s
= final velocity = ?
I = impulse = 30 Ns
Using the impulse-change in momentum equation
I = m(
-
)
30 = 5 (
- 100)
= 106 m/s
Answer:
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J
Explanation:
Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.
Substituting the values of the variables into the equation, we have
ΔV = V₂ - V₁.
ΔV = 175 V - 33 V.
ΔV = 142 V
The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.
So, substituting the values of the variables into the equation, we have
ΔU = eΔV
ΔU = eΔV
ΔU = -1.602 × 10⁻¹⁹ C × 142 V
ΔU = -227.484 × 10⁻¹⁹ J
ΔU = -2.27484 × 10⁻²¹ J
ΔU ≅ -2.275 × 10⁻²¹ J
So, the required equation for the electric potential energy change is
ΔU = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J