Answer:
There is 5.56 g of gold for every 1 g of chlorine
Explanation:
The ratio is the relationship between two numbers, defined as the ratio of one number to the other. So, the ratio between two numbers a and b is the fraction 
You know that a compound has 15.39 g of gold for every 2.77 g of chlorine. This can be expressed by the ratio:

The proportion is the equal relationship that exists between two reasons and is represented by: 
This reads a is a b as c is a d.
To calculate the amount of gold per 1 g of chlorine, the following proportion is expressed:

Solving for the mass of gold gives:

mass of gold= 5.56 grams
So, <u><em>there is 5.56 g of gold for every 1 g of chlorine</em></u>
Answer:
1. 7.256g of NaCl
2. 47.33g of Cl2
Explanation:
2 moles of Na reacts to produce 2 moles of NaCl
8 moles of Na will still produce 8 moles of NaCl
Mass of NaCl = molar mass of Nacl/moles of Nacl
=58.5/8
=7.256g of NaCl
From the equation, 2 moles of Na reacts with 1 mole of Cl2
3/2 moles of Cl2 will react with 3 moles of Na
Mass of Cl2 = 71/1.5
=47.33g of Cl2
Explanation:
Answer:
B, D, E, C, A
Explanation:
We have 5 blocks with their respective masses and volumes.
Block Mass Volume
A 65.14 kg 103.38 L
B 0.64 kg 100.64 L
C 4.08 kg 104.08 L
D 3.10 kg 103.10 L
E 3.53 kg 101.00 L
The density (ρ) is an intensive property resulting from dividing the mass (m) by the volume (V), that is, ρ = m / V
ρA = 65.14 kg / 103.38 L = 0.6301 kg/L
ρB = 0.64 kg / 100.64 L = 0.0064 kg/L
ρC = 4.08 kg / 104.08 L = 0.0392 kg/L
ρD = 3.10 kg / 103.10 L = 0.0301 kg/L
ρE = 3.53 kg / 101.00 L = 0.0350 kg/L
The order from least dense to most dense is B, D, E, C, A