Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is

To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.
Answer:
The further an electron is from the nucleus. the greater its energy level.
Explanation:
When an electron is close to the nucleus, it is at as low an energy level as it can get.
We must put energy into an electron to pull it away from the attraction of a nucleus.
So, electrons that are further from the nucleus are at higher energy levels.
Answer:
7.35 - 7.45
Explanation:
The pH scale ranges from 0 (strongly acidic) to 14 (strongly basic or alkaline). A pH of 7.0, in the middle of this scale, is neutral. Blood is normally slightly basic, with a normal pH range of about 7.35 to 7.45. Usually, the body maintains the pH of blood close to 7.40.
Hope this helps
M=(mols/L) so M=(9.0/2.5) which is 3.6M
In meiosis, DNA replication is followed by two rounds of cell division to produce four daughter cells, each with half the number of chromosomes as the original parent cell. The two meiotic divisions are known as meiosis I and meiosis II.
Explanation: