1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
3 years ago
7

Determine whether you can swim in 1.00 x 10^27 molecules of water.​

Chemistry
1 answer:
zloy xaker [14]3 years ago
7 0

Answer:

We can not swim in 1.00 × 10²⁷ molecules of water

Explanation:

The given number of molecules of water = 1.00 × 10²⁷ molecules

The Avogadro's number, N_A, gives the number of molecules in one mole of a substance

N_A ≈ 6.0221409 × 10²³ molecules/mol

Therefore

Therefore, we have;

The number of moles of water present in 1.00 × 10²⁷ molecules, n = (The number of molecules of water) ÷ N_A

∴ n = (1.00 × 10²⁷ molecules)/(6.0221409 × 10²³ molecules/mol) = 1,660.53902857 moles

The mass of one mole of water = The molar mass of water = 18.01528 g/mol

The mass, 'm', of water in 1,660.53902857 moles of water is given as follows;

Mass = (The number of moles of the substance) × (The molar mass of the substance)

∴ The mass of the water in the given quantity of water, m = 1,660.53902857 moles × 18.01528 g/mol ≈ 29.9150756 kg.

The density pf water, ρ = 997 kg/m³

Volume = Mass/Density

∴ The volume of the water present in the given quantity of water, v = 29.9150756 kg/(997 kg/m³) ≈ 30.0050909 liters

The volume of the water present in 1.00 × 10²⁷ molecules of water ≈ 30.0 liters

The average volume of a human body = 62 liters

Therefore, we can not swim in the given quantity of 1.00 × 10²⁷ molecules = 30.0 liters water

You might be interested in
Air is compressed from an inlet condition of 100 kPa, 300 K to an exit pressure of 1000 kPa by an internally reversible compress
ElenaW [278]

Answer:

(a) W_{isoentropic}=8.125\frac{kJ}{mol}

(b) W_{polytropic}=7.579\frac{kJ}{mol}

(c) W_{isothermal}=5.743\frac{kJ}{mol}

Explanation:

Hello,

(a) In this case, since entropy remains unchanged, the constant k should be computed for air as an ideal gas by:

\frac{R}{Cp_{air}}=1-\frac{1}{k}  \\\\\frac{8.314}{29.11} =1-\frac{1}{k}\\

0.2856=1-\frac{1}{k}\\\\k=1.4

Next, we compute the final temperature:

T_2=T_1(\frac{p_2}{p_1} )^{1-1/k}=300K(\frac{1000kPa}{100kPa} )^{1-1/1.4}=579.21K

Thus, the work is computed by:

W_{isoentropic}=\frac{kR(T_2-T_1)}{k-1} =\frac{1.4*8.314\frac{J}{mol*K}(579.21K-300K)}{1.4-1}\\\\W_{isoentropic}=8.125\frac{kJ}{mol}

(b) In this case, since n is given, we compute the final temperature as well:

T_2=T_1(\frac{p_2}{p_1} )^{1-1/n}=300K(\frac{1000kPa}{100kPa} )^{1-1/1.3}=510.38K

And the isentropic work:

W_{polytropic}=\frac{nR(T_2-T_1)}{n-1} =\frac{1.3*8.314\frac{J}{mol*K}(510.38-300K)}{1.3-1}\\\\W_{polytropic}=7.579\frac{kJ}{mol}

(c) Finally, for isothermal, final temperature is not required as it could be computed as:

W_{isothermal}=RTln(\frac{p_2}{p_1} )=8.314\frac{J}{mol*K}*300K*ln(\frac{1000kPa}{100kPa} ) \\\\W_{isothermal}=5.743\frac{kJ}{mol}

Regards.

8 0
3 years ago
The percent yield of a chemical reaction is
Veronika [31]

Answer:

the measured amount of product that is made from a given amount of reactant

Explanation:

google & quizlet

4 0
3 years ago
Read 2 more answers
Based on the kinetic theory, which statement is true?
Effectus [21]

answer is A

The kinetic theory is used to explain the behaviour of gases.

One of the assumptions states that "a gas is composed of a large number of identical molecules moving at different speeds".

7 0
3 years ago
Read 2 more answers
A student made a graph to show the chemical equilibrium position of a reaction.
pogonyaev

Answer:

Concentration, because the amounts of reactants and products remain constant after equilibrium is reached.

Explanation:

The rate of reaction refers to the amount of reactants converted or products formed per unit time.

As the reaction progresses, reactions are converted into products. This continues until equilibrium is attained in a closed system.

When equilibrium is attained, the rate of forward reaction is equal to the rate of reverse reaction, hence the concentration of reactants and products in the system remain fairly constant over time.

When deducing the rate of reaction, concentration of the specie of interest is plotted on the y-axis against time on the x-axis.

8 0
3 years ago
In a chemical equation, (aq) after one of the substances means that it is which of these? a solid formed from two ionic substanc
Vladimir79 [104]
The answer is dissolved in water, because in chemistry, (aq) is shorthand for aqueous solution.
3 0
3 years ago
Other questions:
  • Balanced equation for this?<br><br> ___ HBr + ___ KHCO3  ___ H2O + ___ KBr + ___ CO2
    12·1 answer
  • How salt solution can be determined by using hydrometer​
    6·1 answer
  • Will someone actually help me and not just something random
    6·1 answer
  • Given the following proposed mechanism, predict the rate law for the overall reaction. A2 + 2 B → 2 AB (overall reaction) Mechan
    13·1 answer
  • antimony(III) sulfide is reacted with excess iron. if 175.6 grams of pure antimony is produced what mass of antimony sulfide was
    9·1 answer
  • Which explains the basis of the Biuret test? a. Under base conditions, copper ions bind to the amino groups of proteins and chan
    7·2 answers
  • How many significant figures are in the measurement 6050 g?
    15·2 answers
  • If you negate reaction 2 and combine the reactions, which substances do not cancel?
    11·1 answer
  • First to help me with these 4 gets brainless HURRYTTT UPPPPP
    10·2 answers
  • 3 reasons why aluminium is used in making of cooking vessels
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!