1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LUCKY_DIMON [66]
3 years ago
10

AFTER a ringing tuning fork passes very quickly in front of a stationary observer...

Physics
1 answer:
Yakvenalex [24]3 years ago
8 0
According to the Doppler effect page I just read it should be D
You might be interested in
An electron is accelerated through 2400 V from rest and then enters a region in which there is a uniform 1.70 T magnetic field.
aalyn [17]

Answer:

Explanation:

Let v be the velocity acquired by electron in electric field

V q = 1/2 m v²

V is potential difference applied on charge q , m is mass of charge , v is velocity acquired

2400 x 1.6 x 10⁻¹⁹ = .5 x 9.1 x 10⁻³¹ x v²

v² = 844 x 10¹²

v = 29.05 x 10⁶ m /s

Maximum force will be exerted on moving electron when it moves perpendicular to magnetic field .

Maximum force = Bqv , where B is magnetic field , q is charge on electron and v is velocity of electron

= 1.7 x 1.6 x 10⁻¹⁹ x 29.05 x 10⁶

= 79.02 x 10⁻¹³ N .

Minimum force will be zero when electron moves along the direction of magnetic field .

5 0
3 years ago
A car maintains a constant speed v as it traverses the hill and valley as shown below. Both the hill and valley have a radius of
Zigmanuir [339]

Answer:

As given that the car maintains a constant speed v as it traverses the hill and valley where both the valley and hill have a radius of curvature R.

(i) At point C, the normal force acting on the car is largest because the centripetal force is up. gravity is down and normal force is up. net force is up so magnitude of normal force must be greater than the car's weight.

(ii) At point A, the normal force acting on the car is smallest because the centripetal force is down. gravity is down and normal force is up. net force is up so magnitude of normal force must be less than car's weight.

(iii) At point C, the driver will feel heaviest because the driver's apparent weight is the normal force on her body.

(iv) At point A, the driver will feel the lightest.

(v)The car can go that much fast without losing contact with the road at A can be determined as follow:

Fn=0 - lose contact with road

Fg= mv²/r

mg=mv²/r

v=sqrt (gr)

8 0
3 years ago
What is the charge of the negative sphere
tatyana61 [14]

Answer:

electrons

Explanation:

8 0
3 years ago
Can anyone solve these for my by using unit vectors? Can you also please show your work
Oxana [17]

4. The Coyote has an initial position vector of \vec r_0=(15.5\,\mathrm m)\,\vec\jmath.

4a. The Coyote has an initial velocity vector of \vec v_0=\left(3.5\,\frac{\mathrm m}{\mathrm s}\right)\,\vec\imath. His position at time t is given by the vector

\vec r=\vec r_0+\vec v_0t+\dfrac12\vec at^2

where \vec a is the Coyote's acceleration vector at time t. He experiences acceleration only in the downward direction because of gravity, and in particular \vec a=-g\,\vec\jmath where g=9.80\,\frac{\mathrm m}{\mathrm s^2}. Splitting up the position vector into components, we have \vec r=r_x\,\vec\imath+r_y\,\vec\jmath with

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)t

r_y=15.5\,\mathrm m-\dfrac g2t^2

The Coyote hits the ground when r_y=0:

15.5\,\mathrm m-\dfrac g2t^2=0\implies t=1.8\,\mathrm s

4b. Here we evaluate r_x at the time found in (4a).

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)(1.8\,\mathrm s)=6.3\,\mathrm m

5. The shell has initial position vector \vec r_0=(1.52\,\mathrm m)\,\vec\jmath, and we're told that after some time the bullet (now separated from the shell) has a position of \vec r=(3500\,\mathrm m)\,\vec\imath.

5a. The vertical component of the shell's position vector is

r_y=1.52\,\mathrm m-\dfrac g2t^2

We find the shell hits the ground at

1.52\,\mathrm m-\dfrac g2t^2=0\implies t=0.56\,\mathrm s

5b. The horizontal component of the bullet's position vector is

r_x=v_0t

where v_0 is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for v_0:

3500\,\mathrm m=v_0(0.56\,\mathrm s)\implies v_0=6300\,\dfrac{\mathrm m}{\mathrm s}

5 0
4 years ago
PLZZZZZ I NEED HELP Which is an adaptation that helps birds maintain a stable body temperature? A. air sacs connected to lungs B
aniked [119]

Answer:

c

Explanation:

trust

5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the magnitude of the electric force between two point charges with Q1 = -1.5 C and Q2 = 0.8 C at a distance of 1 km?
    14·1 answer
  • Q. No. 9 A body falls freely from the top of a tower and during the last second of its fall, it falls through 25m. Find the heig
    8·1 answer
  • _______ are nonmetals that react with metals to form salts.
    7·1 answer
  • Help me with the question b.​
    8·1 answer
  • What is the difference between muscular strength and muscular endurance
    8·2 answers
  • a water wave has a speed of 23.0 meters/second. if the waves frequency is 0.0680 hertz, what is the wavelength
    6·1 answer
  • Calculate the velocity of an apple that falls freely from rest and drops for 3.5 seconds.
    15·1 answer
  • Science plz help meeee
    6·2 answers
  • Anything that has mass and occupies space is defined as.
    11·1 answer
  • Which example is a simple machine?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!