I believe the answer is D. <span>The hypothesis is revised and another experiment is conducted.</span>
The answer to the question is 15 kinetic energy
Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W
The harmonic frequency of a musical instrument is the minimum frequency at which a string that is fixed at both ends in the instrument may vibrate. The harmonic frequency is known as the first harmonic. Each subsequent harmonic has a frequency equal to:
n*f, where n is the number of the harmonic and f is the harmonic frequency. Therefore, the harmonic frequency may be calculated using:
f = 100 / 2
f = 50 Hz
Answer:
Explanation:
Impulse results in a change of momentum
FΔt = mΔV
F = mΔV/Δt
The impulse acting on the hammer will equal the impulse acting on the nail
If we assume upward is the positive direction
F = m(vf - vi)/t
F = 1.2(1.0 - (-1.5)) / 0.001
F = 3000 N