The distance covered by an object accelerating from rest is
D = (1/2) · (acceleration) · (time)² .
In this particular case, 'acceleration' is 9.8 m/s² ... due to gravity.
D = (1/2) · (9.8 m/s²) · (1.67 s)²
D = (4.9 m/s²) · (2.789 s²)
D = 13.67 meters
Answer:
1,200 watts
Explanation:
1 watt = 1 Joule (J) of work / second
So, 3600 Joules of work / 3 seconds is:
3600 J / 3 seconds = 1,200 watts
Answer:
It's impossible for an ideal heat engine to have non-zero power.
Explanation:
Option A is incomplete and so it's possible.
Option B is possible
Option D is related to the first lae and has nothing to do with the second law.
Hence, the correct option is C.
The ideal engine follows a reversible cycle albeit an infinitely slow one. If the work is being done at this infinitely slow rate, the power of such an engine is zero.
We can also stat the second law of thermodynamics in this manner;
It is impossible to construct a cyclical heat engine whose sole effect is the continuous transfer of heat energy from a colder object to a hotter one.
This statement is known as second form or Clausius statement of the second law.
Thus, it is possible to construct a machine in which a heat flow from a colder to a hotter object is accompanied by another process, such as work input.
Answer:
0.0195 m
Explanation:
= density of hockey puck = 9.45 gcm⁻³ = 9450 kgm³
= diameter of hockey puck = 13 cm = 0.13 m
= height of hockey puck = 2.8 cm = 0.028 m
= density of mercury = 13.6 gcm⁻³ = 13600 kgm³
= depth of puck below surface of mercury
According to Archimedes principle, the weight of puck is balanced by the weight of mercury displaced by puck
Weight of mercury displaced = Weight of puck

Answer:
Explanation:
Let that point be at a distance x from q1
Then Kq1/x^2= Kq2/ (s-x)^2
Taking square roots and simplifying, x =s /[1+(q2/q1)^0.5]
Assuming an identical distance, the rigidity of Q on 2Q is equivalent in value to the rigidity of 2Q on Q. for that reason, had the area R been stored an identical, the two forces could be equivalent. inspite of the shown fact that, via fact the area is being decreased, we could constantly consult with the equation we use to calculate those forces: F = ok(Q1xQ2)/(R^2) because R is squared and is being halved, the final result's that's it being divided by potential of a million/4. for that reason, the rigidity would be expanded by potential of four, and be 4F.