E. Parts they don’t resemble
Answer:
A piece of code hidden in spread sheet
Those that harden under strain, such as the aluminum-magnesium alloys used in beverage cans and the copper-zinc alloy, brass, used for cartridges, which show more strain hardening than pure copper or aluminum, respectively.
When a material is deformed under a substantial amount of strain, strain hardening is seen as a strengthening process. Lamellar crystals and chain molecule orientation on a vast scale are the culprits. When plastic materials are stretched past their yield point, this phenomena is frequently seen. When a metal is stretched past its yield point, strain hardening occurs. The metal appears to get stronger and harder to deform as more stress is needed to cause additional plastic deformation. Strain hardening is directly related to fatigue.
Learn more about strain hardening here-
brainly.com/question/15058191
#SPJ4
Answer:
The force over the plane windows are 764 lbf in the EE unit system and 3398 N in the international unit system.
Explanation:
The net force over the window is calculated by multiplying the difference in pressure by the area of the window:
F = Δp*A
The pressure inside the plane is around 1 atm, hence the difference in pressure is:
Δp = 1atm - 0.35 atm = 0.65 atm
Expressing in the EE unit system:
Δp = 0.65 atm * 14.69 lbf/in^2 = 9.55 lbf/in^2
Replacing in the force:
F = 9.55 lbf/in^2 * 80 in^2 = 764 lbf
For the international unit system, we re-calculate the window's area and the difference in pressure:
A = 80 in^2 * (0.0254 m/in)^2 = 0.0516 m^2
Δp = 0.65 atm * 101325 Pa = 65861 Pa = 65861 N/m^2
Replacing in the force:
F = 65861 N/m^2 *0.0516 m^2 = 3398 N