Given Information:
Inlet velocity = Vin = 25 m/s
Exit velocity = Vout = 250 m/s
Exit Temperature = Tout = 300K
Exit Pressure = Pout = 100 kPa
Required Information:
Inlet Temperature of argon = ?
Inlet Temperature of helium = ?
Inlet Temperature of nitrogen = ?
Answer:
Inlet Temperature of argon = 360K
Inlet Temperature of helium = 306K
Inlet Temperature of nitrogen = 330K
Explanation:
Recall that the energy equation is given by
![$ C_p(T_{in} - T_{out}) = \frac{1}{2} \times (V_{out}^2 - V_{in}^2) $](https://tex.z-dn.net/?f=%24%20C_p%28T_%7Bin%7D%20-%20T_%7Bout%7D%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20%28V_%7Bout%7D%5E2%20-%20V_%7Bin%7D%5E2%29%20%24)
Where Cp is the specific heat constant of the gas.
Re-arranging the equation for inlet temperature
![$ T_{in} = \frac{1}{2} \times \frac{(V_{out}^2 - V_{in}^2)}{C_p} + T_{out}$](https://tex.z-dn.net/?f=%24%20T_%7Bin%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B%28V_%7Bout%7D%5E2%20-%20V_%7Bin%7D%5E2%29%7D%7BC_p%7D%20%20%2B%20T_%7Bout%7D%24)
For Argon Gas:
The specific heat constant of argon is given by (from ideal gas properties table)
![C_p = 520 \:\: J/kg.K](https://tex.z-dn.net/?f=C_p%20%3D%20520%20%5C%3A%5C%3A%20J%2Fkg.K)
So, the inlet temperature of argon is
![$ T_{in} = \frac{1}{2} \times \frac{(250^2 - 25^2)}{520} + 300$](https://tex.z-dn.net/?f=%24%20T_%7Bin%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B%28250%5E2%20-%2025%5E2%29%7D%7B520%7D%20%20%2B%20300%24)
![$ T_{in} = \frac{1}{2} \times 119 + 300$](https://tex.z-dn.net/?f=%24%20T_%7Bin%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20119%20%20%2B%20300%24)
![$ T_{in} = 360K $](https://tex.z-dn.net/?f=%24%20T_%7Bin%7D%20%20%3D%20360K%20%24)
For Helium Gas:
The specific heat constant of helium is given by (from ideal gas properties table)
![C_p = 5193 \:\: J/kg.K](https://tex.z-dn.net/?f=C_p%20%3D%205193%20%5C%3A%5C%3A%20J%2Fkg.K)
So, the inlet temperature of helium is
![$ T_{in} = \frac{1}{2} \times \frac{(250^2 - 25^2)}{5193} + 300$](https://tex.z-dn.net/?f=%24%20T_%7Bin%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B%28250%5E2%20-%2025%5E2%29%7D%7B5193%7D%20%20%2B%20300%24)
![$ T_{in} = \frac{1}{2} \times 12 + 300$](https://tex.z-dn.net/?f=%24%20T_%7Bin%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%2012%20%20%2B%20300%24)
![$ T_{in} = 306K $](https://tex.z-dn.net/?f=%24%20T_%7Bin%7D%20%20%3D%20306K%20%24)
For Nitrogen Gas:
The specific heat constant of nitrogen is given by (from ideal gas properties table)
![C_p = 1039 \:\: J/kg.K](https://tex.z-dn.net/?f=C_p%20%3D%201039%20%5C%3A%5C%3A%20J%2Fkg.K)
So, the inlet temperature of nitrogen is
![$ T_{in} = \frac{1}{2} \times \frac{(250^2 - 25^2)}{1039} + 300$](https://tex.z-dn.net/?f=%24%20T_%7Bin%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Cfrac%7B%28250%5E2%20-%2025%5E2%29%7D%7B1039%7D%20%20%2B%20300%24)
![$ T_{in} = \frac{1}{2} \times 60 + 300$](https://tex.z-dn.net/?f=%24%20T_%7Bin%7D%20%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%2060%20%20%2B%20300%24)
![$ T_{in} = 330K $](https://tex.z-dn.net/?f=%24%20T_%7Bin%7D%20%20%3D%20330K%20%24)
Note: Answers are rounded to the nearest whole numbers.