The % composition when 10g of magnesium combine with 4g of nitrogen is 71.43% magnesium and 28.57 % nitrogen
calculation
% composition = mass of an element / total mass x100
mass of magnesium = 10 g
mass of nitrogen = 4g
calculate the total mass used
= 10g of Magnesium + 4 g of nitrogen = 14 grams
% composition for magnesium is therefore = 10/14 x100 = 71.43 %
% composition for nitrogen is therefore = 4 /14 x100 = 28.57 %
The element which has the electronic configuration is CHLORINE.
The atomic number of chlorine is 17 and it has 7 valence electrons in its outermost shell. Because it needs only one more electrons to have a stable octet, it usually react with metals from group one of the periodic table who are normally willing to donate the single electrons in their outermost shells. The ground state electronic configuration of chlorine atom is 1S^2 2S^2 2P^6 3S^2 3P^5.
273g/25 mL = 10.92 (that's the density)
What has a density of 10.92 grams/mL? I don't know but I bet it's in your notes or on the worksheet.
BaSO₄ is relatively harmless, but BaS is highly toxic.
BaSO₄ is quite insoluble (240 µg/100 mL). It is a <em>mild irritant</em> in cases of skin contact and inhalation. However, it is <em>safe enough</em> that health professionals ask patients to drink a suspension of BaSO₄. The Ba is opaque to X-rays, so it makes the stomach and intestines more visible to radiographers.
BaS is soluble (7.7 g/100 mL). It reacts slowly with water and more rapidly in the acid conditions of the stomach to <em>release H₂S</em>.
BaS + 2HCl ⟶ BaCl₂ + H₂S
An H₂S concentration of 60 mg/100 mL can be <em>fatal within 30 min</em>.
<em>Don’t eat barium sulfide!</em>
Answer:
Covalent Bonds
Explanation:
INTERmolecular forces are those that exist between molecules, so you can think of it liek international things taking place between countries. As you are aware, dipoles exist across an entire molecule, so for 2 dipoles to interact, there needs to be 2 molecules. Van der Waals forces also take place between molecules when there is an uneven distribution of electrons across a molecule, causing a temporary weak dipole. Hydrogen bonding is similar to dipole-dipole forces, but only happen when there is a hydrogen interacting with an atom on another molecule that has a lone pair of electrons.
Covalent bonds, however, are INTRAmolecular, meaning they are present within a molecule. Covalent bonds are the bonds that exist when two atoms, within the same molecule, share electrons so both can have a stable electron configuration.
Hope I helped! xx