The answer is the Second one
The answer is 125 Joules
The first thing to take note of is the work equation: W=F×D
Since we already have our force and our distance that will help make this problem easier.
So, W=25*5
W=125
Therefore, our answer is 125 Joules since work is measured in joules
Hope this helped!! :)
Answer:
A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Explanation:
The bulk modulus is represented by the following differential equation:

Where:
- Bulk module, measured in pascals.
- Sample volume, measured in cubic meters.
- Local pressure, measured in pascals.
Now, let suppose that bulk remains constant, so that differential equation can be reduced into a first-order linear non-homogeneous differential equation with separable variables:

This resultant expression is solved by definite integration and algebraic handling:




The final volume is predicted by:

If
,
and
, then:


Change in volume due to increasure on pressure is:



A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Answer
• Improving the environmental performances
• Developing Green Mining technology
Explanation
The effect to the environment caused by opal mining are; impact on soils and geology, clearing of native vegetation disrupting flora and fauna, change in land use and effects of air quality.
Opal mining is currently examining environmental impacts and adopting measures that mitigate the impacts making the process less destructive to the environment.
With the current commitment to sustainability, opal companies are investing funds for Green Mining as a positive way to impact the environment before and after mining.
ANSWER
Velocity of the mass reaches zero
EXPLANATION
We want to identify what hapens to a mass attached toa a spring at maximum displacement.
When a mass attached to a spring is at its maximum position of displacement, the direction of the mass begins to change. This implies that the velocity of the mass will reach zero.
Hence, at maximum displacement, the velocity of the mass reaches zero.