Answer:
a) U = 735 J
, b) U = 125.7 J
, c) U = 0 J
Explanation:
The gravitational power energy is
U = mg y - mg y₀
The last value is a constant, for simplicity we can make it zero, if the lowest point is at the origin of the coordinate system, which in this case we will place in the lowest part
a) Rope is horizontal
The height in this case is the same length of the rope
y = 2.10 m
w = mg = 350 N
U = 350 2.10
U = 735 J
b) when the angle is 34º
y = L - L cos 34
y = L (1- cos34)
y = 2.10 (1- cos 34)
y = 0.359 m
U = 350 0.359
U = 125.7 J
c) in this case this point coincides with the reference system
y = 0
U = 0 J
~686newtons on earth and
~1617 newtons on jupiter
the formula is weight = gravitational acceleration * mass of the object
Among the choices above, the one
that is most closely related to an activated complex is the transition state. The
answer is letter D. This formation forms quickly and does not stay in a way
compound is. It usually forms during the enzyme – substrate reaction.
Answer:
Net displacement = 0
Distance traveled = 2PQ <_up and down
Explanation:
The large leaves help it survive as they serve as the<u> organ for photosynthesis.</u>
Explanation:
- Photosynthesis, the process by which green plants and certain other organisms transform light energy into chemical energy.
- During photosynthesis in green plants, light energy is captured and used to convert water, carbon dioxide, and minerals into oxygen and energy-rich organic compounds
- Leaves provide food and air to help a plant stay healthy and grow. Through photosynthesis, leaves turn light energy into food.
- Through pores, or stomata, leaves breathe in carbon dioxide and breathe out oxygen. Leaves also release excess water.
- Most leaves are broad and so have a large surface area allowing them to absorb more light
- A thin shape means a short distance for carbon dioxide to diffuse in and oxygen to diffuse out easily.
- The exchange of oxygen and carbon dioxide in the leaf occurs through pores called stomata.
- Normally stomata open when the light strikes the leaf in the morning and close during the night.