"Anti-Lock" brake systems release the brakes momentarily when wheel speed sensors indicate a locked wheel during braking and traction.
<u>Explanation:</u>
The safety anti-skid braking system is known as "anti-lock braking system" having huge application on land vehicles like one, two and multiple wheeler vehicles and aircraft. During braking, it avoids wheels to get locked by building tractive contacts to the road's surface.
This seems to be an automated system work on the principles of techniques - threshold and cadence braking. The wheel velocity sensors are utilized by ABS to find whether one or more than one wheels chose to get lock while braking.
The Impulse delivered to the baseball is 89 kgm/s.
To solve the problem above, we use the formula of impulse.
⇒ Formula:
- I = m(v-u)................. Equation 1
Where:
- I = Impulse delivered to the baseball
- m = mass of the baseball
- v = Final velocity of the baseball
- u = initial speed of the baseball
From the question,
⇒ Given:
- m = 0.8 kg
- u = 67 m/s
- v = -44 m/s
⇒ Substitute these values into equation 1
- I = 0.8(-44-67)
- I = 0.8(-111)
- I = -88.8
- I ≈ -89 kgm/s
Note: The negative tells that the impulse is in the same direction as the final velocity and therefore can be ignored.
Hence, The Impulse delivered to the baseball is 89 kgm/s.
Learn more about impulse here: brainly.com/question/7973509
Moving an object up an inclined plane<span> requires </span>less<span>force </span>than<span> lifting it straight up, at a cost of an increase in the distance moved. The </span>mechanical advantage<span>of an </span>inclined plane<span>, the factor by which the force is reduced, is equal to the ratio of the length of the sloped surface to the height it spans.</span>
Answer:
38.8 m/s
Explanation:
Force F(x) = 6 - 2x + 6x²
work


W = mv²/2=7v²/2 = 3.5v² = 5261
v = 38.8 m/s