Complete Question
An athlete at the gym holds a 3.0 kg steel ball in his hand. His arm is 70 cm long and has a mass of 4.0 kg. Assume, a bit unrealistically, that the athlete's arm is uniform.
What is the magnitude of the torque about his shoulder if he holds his arm straight out to his side, parallel to the floor? Include the torque due to the steel ball, as well as the torque due to the arm's weight.
Answer:
The torque is 
Explanation:
From the question we are told that
The mass of the steel ball is 
The length of arm is 
The mass of the arm is 
Given that the arm of the athlete is uniform them the distance from the shoulder to the center of gravity of the arm is mathematically represented as

=>
=>
Generally the magnitude of torque about the athlete shoulder is mathematically represented as

=> 
=> 
Answer:
FALSE!!!
Explanation:
Business letters are formal and normally given to someone of higher importance.
Answer:
The angle of incident ray is 40°.
Explanation:
Given that the angle of incident and reflected ray are the same. In this question, we had given that both angles added up will gives you 80° so you have to divide it by 2 :
incident + reflected = 80°
Let incident = reflected = θ
θ + θ = 80°
2θ = 80°
θ = 80° ÷ 2
= 40°
By definition we have to:
The electric current is the flow of electric charge due to the movement (usually of electrons) that a material travels.
Some properties are:
1) Electric conduction: The conductive materials have a large amount of free electrons, therefore, the passage of electricity is possible.
2) The current inside a circuit is directly proportional to the voltage and inversely proportional to the resistance of the circuit. This is what is known as ohm's law:

3) The current can be continuous or alternate.
Alternating current is the electric current in which the magnitude and direction vary cyclically.
The direct current is the flow of electric charges that does not change direction with time.