Answer:
1.58×10E18
Explanation:
Since we have the reduction potentials we could make decisions regarding which one will be the anode or cathode. Evidently, bromine having the more positive reduction potential will be the cathode while the iodine will be the anode.
E°cell= 1.07- 0.53= 0.54 V
E°cell= 0.0592/n logK
0.54 = 0.0592/2 logK
logK= 0.54/0.0296
logK= 18.2
K= Antilog (18.2)
K= 1.58×10^18
<span>
Sodium Oxide= Na2O
The formula mass of Na2O is (2x23) + 16 = 62g/mol
% Na= (46/62) x 100 = 74%
% O= (16/62) x 100 = 26%</span><span>
</span>
Answer:
F. 2NO + 02 —> 2NO
H. 4NH3 + 502 —> 4NO + 6H20
Explanation:
The law of conservation of mass states that matter can neither be created nor destroyed during a chemical reaction but can be convert from one form to another.
2NO + 02 —> 2NO
From the above, the total number of N on the left balance the total number on the right i.e 2 atoms of N on both side of the equation.
The total number of O on the left balance the total number on the right i.e 2 atoms of O on both side of the equation. This is certified by the law of conservation of mass.
4NH3 + 502 —> 4NO + 6H20
From the above, the total number of N on the left balance the total number on the right i.e 4 atoms of N on both side of the equation.
The total number of O on the left balance the total number on the right i.e 10 atoms of O on both side of the equation.
The total number of H on the left balance the total number on the right i.e 12 atoms of O on both side of the equation.
This is certified by the law of conservation of mass.
The rest equation did not conform to the law of conservation of mass as the atoms on the left side did not balance those on the right side