The number of mole of copper in the sample is 0.008 mole.
Mole is simply defined as the unit of amount in a substance.
The mole of a substance can be obtained by dividing the mass of the subtance by its molar mass i.e
Mole = mass / molar mass
With the above information, we can obtain the mole of copper in the compound as follow:
Mass of copper = 0.5066 g
Molar mass of copper = 63.5 g/mol
<h3>Mole of copper =? </h3>
Mole = mass / molar mass
Mole of copper = 0.5066 / 63.5
<h3>Mole of copper = 0.008 mole </h3>
Therefore, 0.008 mole of copper was initially present in the compound.
Learn more: brainly.com/question/14295066
The first law<span>, also known as </span>Law<span> of Conservation of </span>Energy<span>, states that </span>energy <span>cannot be created or destroyed in an isolated system.</span><span>
So answer 1</span>
The Lewis structure of P₄ is shown in 3-D form. The two bottom corner P atoms are facing right in front of us, one P atom behind the two, and one P above it. Each line represents 2 electrons. When you add the lone electrons, you get a total of 20 valence electrons.
Formal charge of each P: 5 - (2 +1/2*6) = 0