If the temperature is increased then reaction will shift to the left because heat is absorbed.
<h3>What is equilibrium state?</h3>
Equilibrium of any reaction is that state in which concentration of reactant and concentration of product will be constant.
Given chemical reaction is:
A(g) + 2B(g) ⇄ C(g) + D(g)
From the equilibrium state reaction will move only that side which will contribute to maintain the stable state. In the forward reaction heat is released as mention in the question. So, when the temperature of reaction is increased then it shifts towards the left side by absorbing the heat and maintain the stability.
Hence, option (2) is correct, i.e. It will shift to the left because heat is absorbed.
To know more about equilibrium, visit the below link:
brainly.com/question/14297698
John Dalton was a scientist who proposed that all matter consists of atoms. At this stage, no one had yet discovered neutrons and the nucleus. As a result, Dalton's model consisted of a single atom i.e. the atom was the smallest object.
A mass spectrometer is an instrument that is able to see what is inside an atom. Scientists have been able to prove that the item is not the smallest object in the world. Atoms are made up of smaller objects called protons, neutrons and electrons.
We can, therefore, safely conclude that data from mass spectrometry has helped modern scientists to make modifications to Dalton's model. <span>
</span>
Answer:
384.2 K
Explanation:
First we convert 27 °C to K:
- 27 °C + 273.16 = 300.16 K
With the absolute temperature we can use <em>Charles' law </em>to solve this problem. This law states that at constant pressure:
Where in this case:
We input the data:
300.16 K * 1600 m³ = T₂ * 1250 m³
And solve for T₂:
T₂ = 384.2 K
The position of equilibrium lies far to the right, with products being favoured. Hence, option A is correct.
<h3>What is equilibrium?</h3>
Chemical equilibrium is a condition in the course of a reversible chemical reaction in which no net change in the amounts of reactants and products occurs.
A very high value of K indicates that at equilibrium most of the reactants are converted into products.
The equilibrium constant K is the ratio of the concentrations of products to the concentrations of reactants raised to appropriate stoichiometric coefficients.
When the value of the equilibrium constant is very high, the concentration of products is much higher than the concentration of reactants.
This means that most of the reactants are converted into products and the position of equilibrium lies far to the right, with products being favoured.
Hence, option A is correct.
Learn more about the equilibrium here:
brainly.com/question/23641529
#SPJ1
Hi,
Answer is 191.2.
800J = 191.2 cal
Hope this helps.