<u>Answer:</u>
<em>The initial distance between the trains is 1450 m.
</em>
<u>Explanation:</u>
In the question two trains are of equal length 400 m and moves at a uniform speed of 72 km/h. train A is moving ahead of train B. If the train B has to overtake train A it should accelerate.
Train B’s acceleration is
and it accelerated for 50 seconds.
<em>
</em>
<em>t=50 s
</em>
<em>initial speed u=72km/h
</em>
<em>we have to convert this speed into m/s </em>
<em>
</em>
<em>Distance covered in accelerating phase
</em>
<em>
</em>
<em>
</em>
If a train is just behind another, the distance covered by the train located behind during overtaking phase will be equal to the sum of the lengths of the trains.
<em>Here length of train A+length of train
</em>
<em>Hence the initial distance between the trains =
</em>
Answer: T= 715 N
Explanation:
The only external force (neglecting gravity) acting on the swinging mass, is the centripetal force, which. in this case, is represented by the tension in the string, so we can say:
T = mv² / r
At the moment that the mass be released, it wil continue moving in a straight line at the same tangential speed that it had just an instant before, which is the same speed included in the centripetal force expression.
So the kinetic energy will be the following:
K = 1/2 m v² = 15. 0 J
Solving for v², and replacing in the expression for T:
T = 1.9 Kg (3.97)² m²/s² / 0.042 m = 715 N
The answer is 15 kilometers in 20 minutes.
Answer:
The speed of the two cars after coupling is 0.46 m/s.
Explanation:
It is given that,
Mass of car 1, m₁ = 15,000 kg
Mass of car 2, m₂ = 50,000 kg
Speed of car 1, u₁ = 2 m/s
Initial speed of car 2, u₂ = 0
Let V is the speed of the two cars after coupling. It is the case of inelastic collision. Applying the conservation of momentum as :


V = 0.46 m/s
So, the speed of the two cars after coupling is 0.46 m/s. Hence, this is the required solution.
Spherical because it’s more like clouds