Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²
Vi = 2m/s
a= 4.5 m/s
d= 340 m
vf= ?
use this equation ... vf^2=vi<span>^2+2ad
you should get vf = 55.3
hope this helps </span>
Answer:
its soul for that context not sole also rip and i have no idea
Explanation:
Answer:
w = 11.211 KN/m
Explanation:
Given:
diameter, d = 50 mm
F.S = 2
L = 3
Due to symmetry, we have:



To find the maximum intensity, w, let's take the Pcr formula, we have:

Let's take k = 1
Substituting figures, we have:

Solving for w, we have:

w = 11211.14 N/m = 11.211 KN/m
Since Area, A= pi * (0.05)²
. This means it is safe
The maximum intensity w = 11.211KN/m
the answer is Saturn. Saturn has the lowest density in in our solar system.