Answer:
Acceleration, 
Explanation:
Given that,
Height from a ball falls the ground, h = 17.3 m
It is in contact with the ground for 24.0 ms before stopping.
We need to find the average acceleration the ball during the time it is in contact with the ground.
Firstly, find the velocity when it reached the ground. So,

u = initial velocity=0 m/s
a = acceleration=g

It is in negative direction, u = -18.41 m/s
Let a is average acceleration of the ball. Consider, v = and u = -18.41 m/s.

So, the average acceleration of the ball during the time it is in contact is
.
Answer:
a) 
For this case we know the following values:




So then if we replace we got:

b) 
With 
And replacing we have:

And then the scattered wavelength is given by:

And the energy of the scattered photon is given by:

c) 
Explanation
Part a
For this case we can use the Compton shift equation given by:
For this case we know the following values:
So then if we replace we got:
Part b
For this cas we can calculate the wavelength of the phton with this formula:
With
And replacing we have:
And then the scattered wavelength is given by:
And the energy of the scattered photon is given by:
Part c
For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:
I believe there should be some sort of table attached. Unfortunately I cannot answer this question. Sorry!
For a flat coil of wire has an inductance of 40. 0 mh and a resistance of 6. 00 ω, the rate of energy being delivered is mathematically given as
P= 53 W
<h3>What rate is
energy being delivered by the
battery?</h3>
Generally, the equation for the Battery power is mathematically given as
P = I (dt)V
Therefore
P= 2.50 A * 21.2V
P= 53 W
In conclusion, rate of energy being delivered
P= 53 W
Read more about Energy
brainly.com/question/13439286