<span>C. 11.2 L
There are several different ways to solve this problem. You can look up the density of CO2 at STP and work from there with the molar mass of CO2, but the easiest is to assume that CO2 is an ideal gas and use the ideal gas properties. The key property is that a mole of an idea gas occupies 22.413962 liters. And since you have 0.5 moles, the gas you have will occupy half the volume which is
22.413962 * 0.5 = 11.20698 liters. And of the available choices, option "C. 11.2 L" is the closest match.
Note: The figure of 22.413962 l/mole is using the pre 1982 definition of STP which is a temperature of 273.15 K and a pressure of 1 atmosphere (1.01325 x 10^5 pascals). Since 1982, the definition of STP has changed to a temperature of 273.15 K and a pressure of exactly 10^5 pascals. Because of this lower pressure, one mole of an ideal gas will have the higher volume of 22.710947 liters instead of the older value of 22.413962 liters.</span>
Answer:
- <u><em>butylphenyl ether.</em></u>
Explanation:
The formula of the compound is:
- CH₃ - CH₂ - CH₂ - CH₂ - O - C₆H₅
1. The functional group is of the kind R - O - R', i.e. two alkyl groups each attached to one end of the oxygen atom. That means that the compound is an ether.
2. One group attached to the oxygen group is CH₃ - CH₂ - CH₂ - CH₂ - which has 4 carbons and is named butyl group.
3. The other group attached to the oxygen atom is C₆H₅ - which is derived from ciclohexane as is known as phenyl group.
4. Using the rule of naming the subtituents in alphabetical order, you name butyl first and phenyl second, so it is <u><em>butylphenyl ether.</em></u>
Answer:
Fossil fuels
Explanation:
Fossil fuels — natural gas, coal, and petroleum, and — provide most (63 %) of the energy consumed in the United States
The breakdown in 2019 was
Natural gas 38 %
Coal 24 %
Petroleum 1 %