Answer:
a. 21.68 rad/s b. 30.78 m/s c. 897 rev/min² d. 1085 revolutions
Explanation:
a. Its angular speed in radians per second ω = angular speed in rev/min × 2π/60 = 207 rev/min × 2π/60 = 21.68 rad/s
b. The linear speed of a point on the flywheel is gotten from v = rω where r = radius of flywheel = 1.42 m
So, v = rω = 1.42 m × 21.68 rad/s = 30.78 m/s
c. Using α = (ω₁ - ω)/t where α = angular acceleration of flywheel, ω = initial angular speed of wheel in rev/min = 21.68 rad/s = 207 rev/min, ω₁ = final angular speed of wheel in rev/min = 1410 rev/min = 147.65 rad/s, t = time in minutes = 80.5/60 min = 1.342 min
α = (ω₁ - ω)/t
= (1410 - 207)/(80.5/60)
= 60(1410 - 207)/80.5
= 60(1203)80.5
= 896.65 rev/min² ≅ 897 rev/min²
d. Using θ = ωt + 1/2αt²
where θ = number of revolutions of flywheel. Substituting the values of the variables from above, ω = 207 rev/min, α = 896.65 rev/min² and t = 80.5/60 min = 1.342 min
θ = ωt + 1/2αt²
= 207 × 1.342 + 1/2 × 896.65 × 1.342²
= 277.725 + 807.417
= 1085.14 revolutions ≅ 1085 revolutions
Answer:
Time = 0.3256 sec
Explanation:
Velocity = displacement / time
43=14/t
So the time =14/43
t=0.3256 sec
Answer:
(A). The rotational momentum of the flywheel is 12.96 kg m²/s.
(B). The rotational speed of sphere is 400 rad/s.
Explanation:
Given that,
Mass of disk = 10 kg
Radius = 9.0 cm
Rotational speed = 320 m/s
(A). We need to calculate the rotational momentum of the flywheel.
Using formula of momentum


Put the value into the formula


(B). Rotation momentum of sphere is same rotational momentum of the flywheel
We need to calculate the magnitude of the rotational speed of sphere
Using formula of rotational momentum




Put the value into the formula


Hence, (A). The rotational momentum of the flywheel is 12.96 kg m²/s.
(B). The rotational speed of sphere is 400 rad/s.
Answer:
1- Light , 2-Heat , ( and Nuclear energy)
Explanation: