Answer: i would do something that is really easy and i will do test 2 where there aint a word problems and i am going 2 put the work 2 where it is 2 there standard i aint going 2 do sum over there standards of science.
Explanation:
Reflecting telescope. Reflecting telescopes tend to have larger objective (due to the use of mirrors, mirrors are a lot cheaper than lenses) and have the ability to collect more light, while refracting telescopes are limited to objective lenses with smaller diameters due to their structural limitations (chromatic abbreviation, for example). Therefore, reflecting telescopes should be better at viewing faint distant stars
I’ll say c Bc it make more since to find the travel distance
Answer:
F₁ = 4,120.2 N
F₂ = 3,924N
Explanation:
1) Balance of angular momentum around the end where F₁ is applied.
F₂ × 0.5m - F₁ × 0 = mass × g × 1m
⇒ F2 × 0.5 m= 20 kg × 9.81 m/s² × 1 m = 1,962 N×m
F₂ = 196.2 Nm / 0.5m = 3,924 N
2) Balance of forces
F₁ - F₂ = mg
F₁ = F₂ + mg = 3,924N + 20kg (9.81 m/s²) = 4,120.2 N
Answer:
a) f ’’ = f₀ , b) Δf = 2 f₀
Explanation:
a) This is a Doppler effect exercise, which we must solve in two parts in the first the emitter is fixed and in the second when the sound is reflected the emitter is mobile.
Let's look for the frequency (f ’) that the mobile aorta receives, the blood is leaving the aorta or is moving towards the source
f ’= fo
This sound wave is reflected by the blood that becomes the emitter, mobile and the receiver is fixed.
f ’’ = f’
where c represents the sound velocity in stationary blood
therefore the received frequency is
f ’’ = f₀
let's simplify the expression
f ’’ = f₀ \frac{c+v}{c-v}
f ’’ = f₀
b) At the low speed limit v <c, we can expand the quantity
(1 -x)ⁿ = 1 - x + n (n-1) x² + ...
f ’’ = fo
f ’’ = fo
leave the linear term
f ’’ = f₀ + f₀ 2
the sound difference
f ’’ -f₀ = 2f₀ v/c
Δf = 2 f₀