Scientists use scientific notation to communicate extremely small measurements. Hence, option A is correct.
<h3>What scientific notation?</h3>
Scientific notation is a way of writing very large or very small numbers.
Scientists use scientific notation to represent very small or very large numbers because this notation increases the
- accuracy of measured quantities.
- convenience in using the numbers.
- the number of significant figures.
- precision of measurements.
Hence, option A is correct.
Learn more about the scientific notation here:
brainly.com/question/18073768
#SPJ1
Answer:
In the previous section, we discussed the relationship between the bulk mass of a substance and the number of atoms or molecules it contains (moles). Given the chemical formula of the substance, we were able to determine the amount of the substance (moles) from its mass, and vice versa. But what if the chemical formula of a substance is unknown? In this section, we will explore how to apply these very same principles in order to derive the chemical formulas of unknown substances from experimental mass measurements.
Explanation:
tally. The results of these measurements permit the calculation of the compound’s percent composition, defined as the percentage by mass of each element in the compound. For example, consider a gaseous compound composed solely of carbon and hydrogen. The percent composition of this compound could be represented as follows:
\displaystyle \%\text{H}=\frac{\text{mass H}}{\text{mass compound}}\times 100\%%H=
mass compound
mass H
×100%
\displaystyle \%\text{C}=\frac{\text{mass C}}{\text{mass compound}}\times 100\%%C=
mass compound
mass C
×100%
If analysis of a 10.0-g sample of this gas showed it to contain 2.5 g H and 7.5 g C, the percent composition would be calculated to be 25% H and 75% C:
\displaystyle \%\text{H}=\frac{2.5\text{g H}}{10.0\text{g compound}}\times 100\%=25\%%H=
10.0g compound
2.5g H
×100%=25%
\displaystyle \%\text{C}=\frac{7.5\text{g C}}{10.0\text{g compound}}\times 100\%=75\%%C=
10.0g compound
7.5g C
×100%=75%
Answer:
Atomic Mass: 78.96 amu. Melting Point: 217.0 °C (490.15 K, 422.6 °F) Boiling Point: 684.9 °C (958.05005 K, 1264.8201 °F) Number of Protons/Electrons: 34 ... [Bohr Model of Selenium] ... im sorry hope this helped
Explanation:
Answer:The answer is C) The total mass of C and D only.
No because it would have to take an exponential amount of time in which the sun is more likely to explode.