Answer:
The value of
is 0.02495.
Explanation:
Initial concentration of
gas = 0.675 M
Initial concentration of
gas = 0.973 M
Equilibrium concentration of mustard gas = 0.35 M

initially
0.675 M 0.973 M 0
At equilibrium ;
(0.675-0.35) M (0.973-2 × 0.35) M 0.35 M
The equilibrium constant is given as :
![K_c=\frac{[S(CH_2CH_2Cl)_2]}{[SCl_2][C_2H_4]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BS%28CH_2CH_2Cl%29_2%5D%7D%7B%5BSCl_2%5D%5BC_2H_4%5D%5E2%7D)


The relation between
and
are :
where,
= equilibrium constant at constant pressure = ?
= equilibrium concentration constant =14.45
R = gas constant = 0.0821 L⋅atm/(K⋅mol)
T = temperature = 20.0°C =20.0 +273.15 K=293.15 K
= change in the number of moles of gas = [(1) - (1 + 2)]=-2
Now put all the given values in the above relation, we get:


The value of
is 0.02495.
Answer: A property closely related to an atom's mass number is its atomic mass. The atomic mass of a single atom is simply its total mass and is typically expressed in atomic mass units or amu. By definition, an atom of carbon with six neutrons, carbon-12, has an atomic mass of 12 amu.
Hope this helps....... Stay safe and have a Merry Christmas!!!!!!!! :D
The energy that an object has is moving
The energy is transferred throughout the rest of the metal by the moving electrons. Metals are described as
malleable (can be beaten into sheets) and ductile (can be pulled out into wires). This is because of the ability of the atoms to roll over each other into new positions without breaking the metallic bond.
A balanced equation is a prime example of the law of the conservation of mass as the number of atoms in the reactants is consistent with the number of atoms in the reactants meaning the amount of matter has not changed and no mass has been created or destroyed hence obeying the law.