Answer:
the rate that the energy of a system is transformed
Explanation:
We can define energy as the capacity or ability to do work. Power is defined as the rate of doing work or the rate at which energy is transformed. It can also be regarded as the time rate of energy transfer. In older physics literature, power is sometimes referred to as activity.
Power is given by energy/time. Its unit is watt which is defined as joule per second. Another popular unit of power is horsepower. 1 horsepower = 746 watts.
Very large magnitude of power is measured in killowats and megawatts.
The magnitude of the average impulsive force imparted to the ball if it is in contact with the bat is 6000 N
The mass of the baseball, m = 0.15 kg
The speed at which it moves, v = 30 m/s
Time at which the baseball was in contact with the bat, t = 0.75 ms
t = 0.75/1000 s
t = 0.00075 s
The impulsive force is given by the formula:

Substitute m = 0.15 kg, v = 30, and t = 0.00075s into the formula above:

The magnitude of the average impulsive force imparted to the ball if it is in contact with the bat is 6000 N
Learn more here: brainly.com/question/25892144
Answer:

Explanation:
<u>Net Forces and Acceleration</u>
The second Newton's Law relates the net force
acting on an object of mass m with the acceleration a it gets. Both the net force and the acceleration are vector and have the same direction because they are proportional to each other.

According to the information given in the question, two forces are acting on the swimming student: One of 256 N pointing to the south and other to the west of 104 N. Since those forces are not aligned, we must add them like vectors as shown in the figure below.
The magnitude of the resulting force
is computed as the hypotenuse of a right triangle


The acceleration can be obtained from the formula

Note we are using only magnitudes here



<span>37.8 seconds
First, determine the speed difference between the car and truck.
95 km/h - 75 km/h = 20 km/h
Convert that speed into m/s to make a more convenient unit of measure.
20 km/h * 1000 m/km / 3600 s/h = 5.556 m/s
Now it's simply a matter of dividing the distance between the two vehicles and their relative speed.
210 m / 5.556 m/s = 37.8 s
So it will take 37.8 seconds for the car to catch the truck that's 210 meters in front of the car.</span>
Vapor pressure<span> or equilibrium </span>vapor pressure<span> is defined as the </span>pressure<span> exerted by a </span>vapor<span> in thermodynamic equilibrium with its condensed phases at a certain temperature. It is independent with atmospheric pressure since it does not change by changing the atmospheric pressure only. </span>