The total displacement of the toy car at the given positions is 0.
The given parameters;
- <em>First displacement of the car, = 5 cm left</em>
- <em>Second displacement of the car, = 8 cm right</em>
- <em>Third displacement of the car, = 3 cm to the left</em>
The total displacement of the car is calculated as follows;
- <em>Let the </em><em>left </em><em>direction be "</em><em>negative </em><em>direction"</em>
- <em>Let the </em><em>right </em><em>direction be "</em><em>positive </em><em>direction"</em>

Thus, the total displacement of the toy car at the given positions is 0.
Learn more about displacement here: brainly.com/question/18158577
Answer:
mass
Explanation:
This energy of motion is what we call kinetic energy. ... In fact, kinetic energy is directly proportional to mass: if you double the mass, then you double the kinetic energy. Second, the faster something is moving, the greater the force it is capable of exerting and the greater energy it possesses.
pls make as brainlieast
Answer:
the force between the building and the ball is non-conservative (friction-type force)
Explanation
Explanation:For this exercise the student must create an impulse to move the ball towards the building, in this part he performs positive work since the applied force and the displacement are in the same direction.
When the ball moves it has a kinetic energy and if its height increases or decreases its potential energy also changes, but the sum of being must be equal to the initial work.
When the ball arrives and collides with the building, non-conservative forces, of various kinds; rubbing, breaking, etc. It transforms this energy into a part of heat and another in mechanical energy that the building must absorb, let us destroy its wall
Consequently, the force between the building and the ball is non-conservative (friction-type force
Answer:

Explanation:
According to Coulomb's law, the magnitude of the electric force between two point charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

Here k is the Coulomb constant. In this case, we have
,
and
. Replacing the values:

The negative sign indicates that it is an attractive force. So, the magnitude of the electric force is:
