7.5 gallons. (5x60)/40 5x60 being the equation to find the total miles driven
Answer:
Complete the following statements. In general, 50% of the values in a data set lie at or below the median. 75% of the values in a data set lie at or below the third quartile (Q3). If a sample consists of 500 test scores, of them 0.5*500 = 250 would be at or below the median. If a sample consists of 500 test scores, of them 0.75*500 = 375 would be at or above the first quartile (Q1).
Step-by-step explanation:
The median separates the upper half from the lower half of a set. So 50% of the values in a data set lie at or below the median, and 50% lie at or above the median.
The first quartile(Q1) separates the lower 25% from the upper 75% of a set. So 25% of the values in a data set lie at or below the first quartile, and 75% of the values in a data set lie at or above the first quartile.
The third quartile(Q3) separates the lower 75% from the upper 25% of a set. So 75% of the values in a data set lie at or below the third quartile, and 25% of the values in a data set lie at or the third quartile.
The answer is:
Complete the following statements. In general, 50% of the values in a data set lie at or below the median. 75% of the values in a data set lie at or below the third quartile (Q3). If a sample consists of 500 test scores, of them 0.5*500 = 250 would be at or below the median. If a sample consists of 500 test scores, of them 0.75*500 = 375 would be at or above the first quartile (Q1).
Answer: 0.951%
Explanation:Note that in the problem, the scenario is either the adult is using or not using smartphones. So, we have a yes or no scenario involved with the random variable, which is the number of adults using smartphones. Thus, the number of adults using smartphones follows the binomial distribution.
Let x be the number of adults using smartphones and n be the number of randomly selected adults. In Binomial distribution, the probability that there are k adults using smartphones is given by

Where p = probability that an adult is using smartphones = 54% (since 54% of adults are using smartphones).
Since n = 12 and k = 3, the probability that fewer than 3 are using smartphones is given by

Therefore, the probability that there are fewer than 3 adults are using smartphone is 0.00951 or
0.951%.
An expression does not have an equal sign.
Since the value of a nickel is 5 cents and you want to find out the value of n nickels (which means if you had any number of nickels) the expression would be
.05n