Answer:
ΔT = 59.9 ° C
Explanation:
For this exercise the brake energy is totally converted into heat
Let's calculate the vehicle energy
K = ½ m v²
Let's reduce the units to the SI system
v = 30 mph (1609.34 m / mile) (1h / 3600s) = 13.41 m / s
Em = K = ½ 1200 13.41²
K = 1.079 105 J
All this energy is transformed into heat
Em = Q
The expression for heat is
Q = m
ΔT
ΔT = Q / m
The specific heat of iron is
= 450 J / Kg ºC
ΔT = 1,079 105 / (4.0 450)
ΔT = 59.9 ° C
Answer:
B. Stages are continuous and gradual.
Explanation:
The answer is Sagittarius A, a very large black hole.
Explanation:
1. Low-energy particle detector: This particle detector measures the charged particles of the solar winds.
2. Magnetometer boom: This device measures magnetic fields produced by astronomical bodies.
3. High-gain antenna: A HGA has a narrow radio beam that is used to enhance the strength of signal. They simply amplify the weak signals.
4. Photopolarimeter: This is an instrument that is used to measure the strength and intensity and polarization of reflected light.
Answer:
m₁ / m₂ = 1.3
Explanation:
We can work this problem with the moment, the system is formed by the two particles
The moment is conserved, to simulate the system the particles initially move with a moment and suppose a shock where the particular that, without speed, this determines that if you center, you should be stationary, which creates a moment equal to zero
p₀o = m₁ v₁ + m₂ v₂
pf = 0
m₁ v₁ + m₂ v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂= - (-6.2) / 4.7
m₁ / m₂ = 1.3
Another way to solve this exercise is to use the mass center relationship
Xcm = 1/M (m₁ x₁ + m₂ x₂)
We derive from time
Vcm = 1/M (m₁ v₁ + m₂v₂)
As they say the velocity of the center of zero masses
0 = 1/M (m₁ v₁ + m₂v₂)
m₁ v₁ + m₂v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂ = 1.3