It would be 35.8 Calories or calories. Not sure about that part. Hope this helps though.
Answer:
A. It would float with about 80% of the cube below the surface of the water and 20% above the surface.
Explanation:
The choice that best describes what happens to cube of the given density value is that it would float with about 80% of the cube would be below the surface of the water and 20% above the surface.
Density is the mass per unit volume of a substance. The more mass a body has relative to volume, the great it's density. In short, density is directly proportional to mass and inversely related to volume.
The density of water is 1g/mL
If the density of the cube were to be the same with that of water, the substance will just mix up with water .
Here the density is less than that of water.
The density is 0.2g/mL
Therefore, 20% will stay afloat and 80% will be below the surface of the water.
Instability of an atoms nucleus can result from an excess of either neutrons or protons . So neutrons and protons .
Answer:
The molar concentration of HCl in the aqueous solution is 0.0131 mol/dm3
Explanation:
To get the molar concentration of a solution we will use the formula:
<em>Molar concentration = mass of HCl/ molar mass of HCl</em>
<em></em>
Mass of HCl in the aqueous solution will be 40% of the total mass of the solution.
We can extract the mass of the solution from its density which is 1.2g/mL
We will further perform our analysis by considering only 1 ml of this aqueous solution.
The mass of the substance present in this solution is 1.2g.
<em>The mass of HCl Present is 40% of 1.2 = 0.48 g.</em>
The molar mass of HCl can be obtained from standard tables or by adding the masses of Hydrogen (1 g) and Chlorine (35.46 g) = 36.46g/mol
Therefore, the molar concentration of HCl in the aqueous solution is 0.48/36.46 = 0.0131 mol/dm3