Answer:
a. 1.12 L
Explanation:
Step 1: Write the balanced equation for the photosynthesis
6 CO₂(g) + 6 H₂O(l) ⇒ C₆H₁₂O₆(s) + 6 O₂(g)
Step 2: Calculate the moles corresponding to 2.20 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
2.20 g × 1 mol/44.01 g = 0.0500 mol
Step 3: Calculate the moles of O₂ produced
The molar ratio of CO₂ to O₂ is 6:6. The moles of O₂ produced are 6/6 × 0.0500 mol = 0.0500 mol
Step 4: Calculate the volume occupied by 0.0500 moles of O₂ at STP
At STP, 1 mole of O₂ occupies 22.4 L.
0.0500 mol × 22.4 L/1 mol = 1.12 L
Answer:
a.) 22.4 L Ne.
Explanation:
It is known that every 1.0 mol of any gas occupies 22.4 L.
For the options:
<em>It represents </em><em>1.0 mol of Ne.</em>
<em />
using cross multiplication:
1.0 mol occupies → 22.4 L.
??? mol occupies → 20 L.
The no. of moles of (20 L) Ar = (1.0 mol)(20 L)/(22.4 L) = 0.8929 mol.
using cross multiplication:
1.0 mol occupies → 22.4 L.
??? mol occupies → 2.24 L.
<em>The no. of moles of (2.24 L) Xe </em>= (1.0 mol)(2.24 L)/(22.4 L) = <em>0.1 mol.</em>
- So, the gas that has the largest number of moles at STP is: a.) 22.4 L Ne.
The atoms of some chemical elements have different forms, called isotopes. These break down over time in a process scientists call radioactive decay. Each original isotope, called the parent, gradually decays to form a new isotope, called the daughter. Each isotope is identified with what is called a ‘mass number’. When ‘parent’ uranium-238 decays, for example, it produces subatomic particles, energy and ‘daughter’ lead-206.
Yes you are correct hope you do well