Answer:
680 g/m is the molar mass for the unknown, non electrolyte, compound.
Explanation:
Let's apply the formula for osmotic pressure
π = Molarity . R . T
T = T° absolute (in K)
R = Universal constant gases
π = Pressure
Molarity = mol/L
As units of R are L.atm/mol.K, we have to convert the mmHg to atm
760 mmHg is 1 atm
28.1 mmHg is (28.1 .1)/760 = 0.0369 atm
0.0369 atm = M . 0.082 L.atm/mol.K . 293K
(0.0369 atm / 0.082 mol.K/L.atm . 293K) = M
0.0015 mol/L = Molarity
This data means the mol of solute in 1L, but we have 100mL so
Molarity . volume = mol
0.0015 mol/L . 0.1L = 1.5x10⁻⁴ mole
The molar mass will be: 0.102g / 1.5x10⁻⁴ m = 680 g/m
Answer:
2
Explanation:
C⁴H¹⁰ + 2O² —> 4CH²O + H²
Answer:
2.1 moles of water formed.
Explanation:
Given data:
Moles of water formed = ?
Moles of Ni(OH) = 4.20 mol
Solution:
Chemical equation:
2Ni(OH) → Ni₂O + H₂O
Now we will compare the moles of Ni(OH) with water.
Ni(OH) : H₂O
2 : 1
4.20 : 1/2×4.20 = 2.1 mol
2.1 moles of water formed.
If you are a plato user the answer is D. vitamin E is fat soluble
Answer:
71 Ga has a naturally abundance of 36%
Explanation:
Step 1: Given data
Gallium has 2 naturally occurring isotopes: this means the abundance of the 2 isotopes together is 100 %. The atomic weight of Ga is 69.72 amu. This is the average of all the isotopes.
Since the average mass of 69.72 is closer to the mass of 69 Ga, this means 69 Ga will be more present than 71 Ga
Percentage 69 Ga> Percentage 71 Ga
<u>Step 2:</u> Calculate the abundance %
⇒Percentage of 71 Ga = X %
⇒Percentage of 69 Ga = 100 % - X %
The mass balance equation will be:
100*69.72 = x * 71 + (100 - x)*69
6972 = 71x + 6900 -69x
72 = 2x
x = 36 %
71 Ga has a naturally abundance of 36%
69 Ga has a naturally abundance of 64%