It means that 22.5×10^5 J of heat is required to change 1 kg of water into steam.
Latent heat of vaporization is amount of energy required to change 1 gram (in this example 1 kilogram) of material from the liquid to the gaseous state at its boiling point.
Boiling point of the water is 100°C.
Joule (J) is the standard unit for energy (in this example heat).
Evaporization is phase change process in which the water changes from a liquid to a gas (water vapor). Fore example, solar radiation can be the source of energy for evaporation.
More about heat of vaporization: brainly.com/question/14679329
#SPJ4
The full question can be seen below:

The decomposition of
is represented by the equation above.
A student monitored the decomposition of a 1.0 L sample of
at a constant temperature of 300K and recorded the concentration of
as function of time. The results are given in the table below:
Time (s) 
0 2.7
200 2.1
400 1.7
600 1.4
The
produced from the decomposition of the 1.0 L sample of
is collected in a previously evacuated 10.0 L flask at 300 K. What is the approximate pressure in the flask after 400 s?
(For estimation purpose, assume that 1.0 mole of gas in 1.0 L exerts a pressure of 24 atm at 300 K).
Answer:
1.2 atm
Explanation:
Considering all assumptions as stated above;

Initial 2.7 mole --- ---
Change -1.0 --- 
Equilibrium 1.7 mole --- 0.5 mole
To determine the concentration of O₂; we need to convert the moles to concentration for O₂ = 
= 
= 0.05 
Thus, based on the assumption that "1.0 mole of gas in 1.0 L exerts a pressure of 24 atm"
∴ 0.05
will give rise to = 0.05
× 24
= 1.2 atm
Answer is: there are ten atoms in one molecule of antifreeze.
One molecule of ethylene glycol (C₂H₄(OH)₂) has two carbon atoms, six hydrogen atoms (4 + 2 · 1) and two oxygen atoms (2 · 1). So there are:
2 + 6 + 2 = 10 atoms.
Ethylene glycol (C₂H₄(OH)₂) is an odorless, sweet-tasting, colorless viscous liquid.
Since Chlorine is in excess, this is a limiting reagent problem.
1) convert 11.50 g Na to g of NaCl using the balanced equation.
2) percent yield = (actual yield)/(potential yield).
.85= (actual yield)/(g from step 1)
Solve for actual yield