Answer:
The specific rotation of D is 11.60° mL/g dm
Explanation:
Given that:
The path length (l) = 1 dm
Observed rotation (∝) = + 0.27°
Molarity = 0.175 M
Molar mass = 133.0 g/mol
Concentration in (g/mL) = 0.175 mol/L × 133.0 g/mol
Concentration in (g/mL) = 23.275 g/L
Since 1 L = 1000 mL
Concentration in (g/mL) = 0.023275 g/mL
The specific rotation [∝] = ∝/(1×c)
= 0.27°/( 1 dm × 0.023275 g/mL
)
= 11.60° mL/g dm
Thus, the specific rotation of D is 11.60° mL/g dm
We are given the chemical reaction and the amount of reactant used for the process. We use these data together to obtain what is asked. We do as as follows:
0.882 mol H2O2 ( 1 mol O2 / 2 mol H2O2 ) = 0.441 mol O2 produced
Hope this answers the question.
Answer: A balloon is charged by a process of frictional charging and the object is getting charged by the process of induction.
Explanation:
When two bodies are rubbed against each other, charging by friction or rubbing occurs. The electropositive object loses electrons to electronegative object. Thus, when balloon is rubbed on a wall, it becomes charged.
The charged balloon is able to attract an uncharged object by inducing charge on it without the two objects touching each other. Electrostatic force acts between two charged objects. Charged balloon causes electrons to move at one end thereby inducing opposite charge in the object and thus, charged balloon is able to attract uncharged object.
We can set up an ICE table for the reaction:
HClO H+ ClO-
Initial 0.0375 0 0
Change -x +x +x
Equilibrium 0.0375-x x x
We calculate [H+] from Ka:
Ka = 3.0x10^-8 = [H+][ClO-]/[HClO] = (x)(x)/(0.0375-x)
Approximating that x is negligible compared to 0.0375 simplifies the equation to
3.0x10^-8 = (x)(x)/0.0375
3.0x10^-8 = x2/0.0375
x2 = (3.0x10^-8)(0.0375) = 1.125x10^-9
x = sqrt(1.125x10^-9) = 0.0000335 = 3.35x10^-5 = [H+]
in which 0.0000335 is indeed negligible compared to 0.0375.
We can now calculate pH:
pH = -log [H+] = - log (3.35 x 10^-5) = 4.47
Answer:
- The first equation, <em>a. PV = nRT</em>, <u>is not</u> <em>a valid statement of the ideal gas law.</em>
Explanation:
The basic expression for the<em> ideal gas law</em> is:
.......... [Equation 1]
Where:
- n is the number of moles of the gas
- V is the volume occupied by the gas
- p is the pressure exerted by the gas molecules
- T is the temperature in absolute scale (Kelvin)
- R is the Universal gas constant (0.0821 atm-liter /K-mol or the equivalents in other units)
You can perform different algebraic operations to obtain equivalent equations:
<u>Choice b) Divide equation 1 by T and you get</u>:
- pV / T = nR, which is the choice b. from your list.
<u>Choice c) Divide equation 1 by n × V and you get</u>:
- p/n = RT / V, which is the choice c. from your list.
<u>Choice d) Divide equation 1 n × T and you get</u>:
- pV / (nT) = R, which is the choice d. from your list.
The choice a. p = nRTV states that p and V are in direct relation, when the ideal gas law states that p and V are inversely related, so that equation is wrong.
<u>Conclusion: </u>the choice a, p = nRTV, is not a statement of the ideal gas law.