Answer:
D.
Explanation:
D is the correct answer because, in aqueous solution, solvent is water and solute (in this example carbon dioxide CO₂) is a substance dissolved in water. The amount of solute that can be dissolved in a solvent depends of chemical composition, temperature and pressure
<u>Answer:</u>
<u>For 2:</u> The % yield of the product is 92.34 %
<u>For 3:</u> 12.208 L of carbon dioxide will be formed.
<u>Explanation:</u>
The percent yield of a reaction is calculated by using an equation:
......(1)
Given values:
Actual value of the product = 78.4 g
Theoretical value of the product = 84.9 g
Plugging values in equation 1:

Hence, the % yield of the product is 92.34 %
The number of moles is defined as the ratio of the mass of a substance to its molar mass.
The equation used is:
......(2)
Given mass of carbon dioxide = 24 g
Molar mass of carbon dioxide = 44 g/mol
Plugging values in equation 1:

<u>At STP conditions:</u>
1 mole of a gas occupies 22.4 L of volume
So, 0.545 moles of carbon dioxide will occupy =
of volume
Hence, 12.208 L of carbon dioxide will be formed.
Feathers have more density and less have more mass, feather is super light and a POUND of led isnt
Answer:
Explanation:1.8
×
10
24
water molecules.
Explanation:
There are
6.022
×
10
23
molecules in a mole.
There are
18.01528
grams of water per mole of water.
These can be figured out using the concept of moles and molecular weight. I have attached a video that provides a good explanation.
Explanation of moles and molecular weight
Now you have all the information needed to solve the problem.
You start out with 54 grams of water. You want to convert that into molecules, but how can you do that? You can't go directly from grams to molecules because there is no easy unit conversion. However, you can go from grams to moles using
18.01528
grams of water per mole of water.
From there, you can go from moles to molecules using
6.022
×
10
23
molecules in a mole.
A T chart is useful for this kind of problem.
54 g H
2
O
×
1 mol H
2
O
18.0152 g H
2
O
×
6.022
×
10
23
molecules
1 mol H
2
O
54
g H
2
O
×
1 mol H
2
O
18.0152
g H
2
O
×
6.022
×
10
23
molecules
1 mol H
2
O
Notice when you apply this T chart, the units cancel out, leaving molecules in the final answer, which is the correct units.
Now actually multiply everything out
54
×
6.022
×
10
23
18.0152
=
1.805
×
10
24
You are left with
1.8
×
10
24
water molecules (rounded to two sig figs).