I think it's 10 but i may not be right so, sorry if it's wrong lol
Answer:
Explanation:
For a general equilibrium
aA +bB ⇔ cC + dD ,
the equilibrium constant is K = [C]^c [D]^d / [A]^a[B]^b.
Our reasoning here should be based on the fact that Q has the same expression as K, but is used when the system is not at equilibrium, and the system will react to make Q = K to attain it ( Le Chatelier´s principle ).
So with this in mind, lets answer this question.
1. False: Q can large or small but is not the value of the equilibrium constant, it will predict the side towards the equilibrium will shift to attain it.
2. False: Given the expression for the equilibrium constant, we know if K is small the concentrations of the reactants will be large compared to the equilibrium concentrations of the products.
3. False: when the value of K is large, the equilibrium concentrations of the products will be large and it will lie on the product side.
4. True: From our previous reasongs this is the true one.
5. False: If K is small, the equilibrium lies on the reactants side.
Answer:
The correct solution is "3.28 m".
Explanation:
According to the question,
Mol fraction of solvent,
= 0.0558
Molar mass of water,
= 18 g/mol
Mol of H₂O in 1000 g water,
= 55.55 mol
Now,
Let the mol of solute will be "x mol".
Total mol in solution will be "55.55 + x".
As we know,
⇒ The mol fraction of solvent = 

![x=0.0558[55.55+x]](https://tex.z-dn.net/?f=x%3D0.0558%5B55.55%2Bx%5D)


I’m pretty sure it’s -2 my friend said it ♂️
The answer is : 17.5 liters drained and replaced by 17.5 liters of 100% solution.
x = amount drained and replaced
(70-x) = remaining amount of 20% solution
<span>.20(70-x) + 1.00(x) = .40(70)
14 - .2x + 1x = 28
1x - .2x = 28 - 14
</span><span>.8x = 14
</span><span>x = 14/.8
x= 17,5 ( 17.5 liters drained and replaced by 17.5 liters of 100% solution)
</span>