Answer:
0.529
Explanation:
Let's consider the reaction A → Products
Since the units of the rate constant are s⁻1, this is a first-order reaction with respect to A.
We can find the concentration of A at a certain time t (
) using the following expression.
![[A]_{t}=[A]_{0}.e^{-k\times t}](https://tex.z-dn.net/?f=%5BA%5D_%7Bt%7D%3D%5BA%5D_%7B0%7D.e%5E%7B-k%5Ctimes%20t%7D)
where,
[A]₀: initial concentration of A
k: rate constant
![[A]_{t}=0.548M.e^{-3.6\times 10^{-4}s^{-1}\times 99.2s }](https://tex.z-dn.net/?f=%5BA%5D_%7Bt%7D%3D0.548M.e%5E%7B-3.6%5Ctimes%2010%5E%7B-4%7Ds%5E%7B-1%7D%5Ctimes%2099.2s%20%7D)
![[A]_{t}=0.529 M](https://tex.z-dn.net/?f=%5BA%5D_%7Bt%7D%3D0.529%20M)
Answer:
B
Explanation:
I looked it up and found the answer lol
Mention four reasons why the poll ordinance failed
2n² rule:
This rule is used to determine number of electrons in particular shell.
n=1 means K shell
n=2 means L shell
n=3 means M shell
n=4means N shell
The first K shell can hold upto 2 electrons, L shell can hold up to 8, third M shell can hold up to 18and the fourth N shell can hold upto 32 electrons. This rule of arrangement of electrons according to the shell is known 2n2 rule where n means number of shell.
For example: There is one proton in the nucleus of hydrogen atom, which moves in K shell path. It has no neutron.
In easy words the connection between Reactants, Products and Limiting reactants is as follow,
Reactants and Products:
Reactants are the starting materials for the synthesis of final synthesized materials called as products.
Example:
CH₄ + 2 O₂ → CO₂ + 2 H₂O
In above reaction Methane (CH₄) and Oxygen (O₂) are the reactants while, CO₂ and H₂O are the products.
Reactants, Products and Limiting Reactants:
Considering the same example it is seen that for one mole of CO₂ two moles of O₂ are required to completely convert into CO₂ and H₂O. If either of the reactant is taken less than the required amount then it will act as a limiting reactant because it will consume first leaving the second reactant present in excess as compare to it. Hence, we can say that the limiting reactant is the starting material which controls the amount of product being formed.