1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ki77a [65]
3 years ago
8

Carl why is there a dead man in the living room?

Engineering
1 answer:
scoray [572]3 years ago
3 0
You always need some company
You might be interested in
Why or why not the following materials will make good candidates for the construction of
zvonat [6]

Answer:

Answer explained below

Explanation:

3.] a] A turbine blade is the individual component which makes up the turbine section of a gas turbine. The blades are responsible for extracting energy from the high temperature, high pressure gas produced by the combustor.

The turbine blades are often the limiting component of gas turbines. To survive in this difficult environment, turbine blades often use exotic materials like superalloys and many different methods of cooling, such as internal air channels, boundary layer cooling, and thermal barrier coatings. The blade fatigue failure is one of the major source of outages in any steam turbines and gas turbines which is due to high dynamic stresses caused by blade vibration and resonance within the operating range of machinery.

To protect blades from these high dynamic stresses, friction dampers are used.

b] Thermal barrier coatings (TBC) are highly advanced materials systems usually applied to metallic surfaces, such as on gas turbine or aero-engine parts, operating at elevated temperatures, as a form ofexhaust heat management.

These 100μm to 2mm coatings serve to insulate components from large and prolonged heat loads by utilizing thermally insulating materials which can sustain an appreciable temperature difference between the load-bearing alloys and the coating surface.

In doing so, these coatings can allow for higher operating temperatures while limiting the thermal exposure of structural components, extending part life by reducing oxidation and thermal fatigue.

In conjunction with active film cooling, TBCs permit working fluid temperatures higher than the melting point of the metal airfoil in some turbine applications.

Due to increasing demand for higher engine operation (efficiency increases at higher temperatures), better durability/lifetime, and thinner coatings to reduce parasitic weight for rotating/moving components, there is great motivation to develop new and advanced TBCs.

3 0
3 years ago
What is Not considered as metric system ? a. Length b. Mass c. Time d. Volume e. Temperature
vampirchik [111]

Answer:

D.) Volume

Explanation:

7 0
3 years ago
Read 2 more answers
Two balanced Y-connected loads in parallel, one drawing 15kW at 0.6 power factor lagging and the other drawing 10kVA at 0.8 powe
NemiM [27]

Answer:

(a) attached below

(b) pf_{C}=0.85 lagging

(c) I_{C} =32.37 A

(d) X_{C} =49.37 Ω

(e) I_{cap} =9.72 A and I_{line} =27.66 A

Explanation:

Given data:

P_{1}=15 kW

S_{2} =10 kVA

pf_{1} =0.6 lagging

pf_{2}=0.8 leading

V=480 Volts

(a) Draw the power triangle for each load and for the combined load.

\alpha_{1}=cos^{-1} (0.6)=53.13°

\alpha_{2}=cos^{-1} (0.8)=36.86°

S_{1}=P_{1} /pf_{1} =15/0.6=25 kVA

Q_{1}=P_{1} tan(\alpha_{1} )=15*tan(53.13)=19.99 ≅ 20kVAR

P_{2} =S_{2}*pf_{2} =10*0.8=8 kW

Q_{2} =P_{2} tan(\alpha_{2} )=8*tan(-36.86)=-5.99 ≅ -6 kVAR

The negative sign means that the load 2 is providing reactive power rather than consuming  

Then the combined load will be

P_{c} =P_{1} +P_{2} =15+8=23 kW

Q_{c} =Q_{1} +Q_{2} =20-6=14 kVAR

(b) Determine the power factor of the combined load and state whether lagging or leading.

S_{c} =P_{c} +jQ_{c} =23+14j

or in the polar form

S_{c} =26.92°

pf_{C}=cos(31.32) =0.85 lagging

The relationship between Apparent power S and Current I is

S=VI^{*}

Since there is conjugate of current I therefore, the angle will become negative and hence power factor will be lagging.

(c) Determine the magnitude of the line current from the source.

Current of the combined load can be found by

I_{C} =S_{C}/\sqrt{3}*V

I_{C} =26.92*10^3/\sqrt{3}*480=32.37 A

(d) Δ-connected capacitors are now installed in parallel with the combined load. What value of capacitive reactance is needed in each leg of the A to make the source power factor unity?Give your answer in Ω

Q_{C} =3*V^2/X_{C}

X_{C} =3*V^2/Q_{C}

X_{C} =3*(480)^2/14*10^3 Ω

(e) Compute the magnitude of the current in each capacitor and the line current from the source.

Current flowing in the capacitor is  

I_{cap} =V/X_{C} =480/49.37=9.72 A

Line current flowing from the source is

I_{line} =P_{C} /3*V=23*10^3/3*480=27.66 A

8 0
3 years ago
LUNES MARTES MIÉRCOLES JUEVES VIERNES SÁBADO DOMINGO
scZoUnD [109]

Answer:

si

Explanation:

8 0
3 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
Other questions:
  • A corroded metal gusset plate was found on a bridge. It was estimated that the original area of the plate was 750 cm2 and that a
    11·1 answer
  • Consider a simple ideal Rankine cycle and an ideal regenerative Rankine cycle with one open feedwater heater. The two cycles are
    15·1 answer
  • For the reactions of ketone body metabolism, _______.
    15·1 answer
  • Suppose you were a heating engineer and you wished to consider a house as a dynamic system. Without a heater, the average temper
    6·1 answer
  • A light pressure vessel is made of 2024-T3 aluminum alloy tubing with suitable end closures. This cylinder has a 90mm OD, a 1.65
    8·1 answer
  • A 3-phase induction motor is being driven at a frequency of 80 Hz, and the motor speed is 1000 rpm. How many poles does the moto
    8·1 answer
  • (a) In a 3-phase, 4-wire system, the currents are in the A, B, and C lines under abnormal conditions of loading were as follows:
    9·1 answer
  • Air, at a free-stream temperature of 27.0°C and a pressure of 1.00 atm, flows over the top surface of a flat plate in parallel f
    13·1 answer
  • How long will it take a Honda Civic to travel 118 miles if it is travelling at an average speed of 72 mph?
    6·1 answer
  • The ______ number of a flow is defined as the ratio of the speed of flow to the speed of sound in the flowing fluid.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!