Answer:
F=G(m1m2)/Rsquare if radius is given
F=G(m1m2)/dsquare if distance is given
where,
f =gravitational force
G =gravitational constant
m1=mass of one object
m2=mass of another object
d=distance between two object from their center r=radius of earth/planet
Answer:
e) 31.6 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Equation of motion




Time taken by the cars to meet 31.6 seconds.
Answer:
hhhhhhhhhhhhhhhhhhhhhhhhhhhh
Explanation:
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Answer:
Mass = 18.0 kg
Explanation:
From Hooke's law,
F = ke
where: F is the force, k is the spring constant and e is the extension.
But, F = mg
So that,
mg = ke
On the Earth, let the gravitational force be 10 m/
.
3.0 x 10 = k x 5.0
30 = 5k
⇒ k =
................ 1
On the Moon, the gravitational force is
of that on the Earth.
m x
= k x 5.0
= 5k
⇒ k =
............. 2
Equating 1 and 2, we have;
= 
m = 
= 18.0
m = 18.0 kg
The mass required to produce the same extension on the Moon is 18 kg.
Answer: Gravity is the force that keeps planets in orbit around the Sun. Gravity alone holds us to Earth's surface.
Planets have measurable properties, such as size, mass, density, and composition. A planet's size and mass determines its gravitational pull.
A planet's mass and size determines how strong its gravitational pull is.
Models can help us experiment with the motions of objects in space, which are determined by the gravitational pull between them.
Explanation: