Answer:
True
Explanation:
Esters are generally pleasantly smelling compounds. In fact, the fragrance industry uses esters to produce perfume, as well as uses esters as an ingredient to produce synthetic flavours and cosmetics, all of which have unique and pleasant smells.
Answer:
Here are a few more examples:
Smoke and fog (Smog)
Dirt and water (Mud)
Sand, water and gravel (Cement)
Water and salt (Sea water)
Potassium nitrate, sulfur, and carbon (Gunpowder)
Oxygen and water (Sea foam)
Petroleum, hydrocarbons, and fuel additives (Gasoline)
Heterogeneous mixtures possess different properties and compositions in various parts i.e. the properties are not uniform throughout the mixture.
Examples of Heterogeneous mixtures – air, oil, and water, etc.
Examples of Homogeneous mixtures – alloys, salt, and water, alcohol in water, etc.
Explanation:
Answer:Transamination, a chemical reaction that transfers an amino group to a ketoacid to form new amino acids. This pathway is responsible for the deamination of most amino acids. This is one of the major degradation pathways which convert essential amino acids to non-essential amino acids (amino acids that can be synthesized de novo by the organism).
Explanation:
Answer:
0.4 M
Explanation:
Equilibrium occurs when the velocity of the formation of the products is equal to the velocity of the formation of the reactants. It can be described by the equilibrium constant, which is the multiplication of the concentration of the products elevated by their coefficients divided by the multiplication of the concentration of the reactants elevated by their coefficients. So, let's do an equilibrium chart for the reaction.
Because there's no O₂ in the beginning, the NO will decompose:
N₂(g) + O₂(g) ⇄ 2NO(g)
0.30 0 0.70 Initial
+x +x -2x Reacts (the stoichiometry is 1:1:2)
0.30+x x 0.70-2x Equilibrium
The equilibrium concentrations are the number of moles divided by the volume (0.250 L):
[N₂] = (0.30 + x)/0.250
[O₂] = x/0.25
[NO] = (0.70 - 2x)/0.250
K = [NO]²/([N₂]*[O₂])
K = 
7.70 = (0.70-2x)²/[(0.30+x)*x]
7.70 = (0.49 - 2.80x + 4x²)/(0.30x + x²)
4x² - 2.80x + 0.49 = 2.31x + 7.70x²
3.7x² + 5.11x - 0.49 = 0
Solving in a graphical calculator (or by Bhaskara's equation), x>0 and x<0.70
x = 0.09 mol
Thus,
[O₂] = 0.09/0.250 = 0.36 M ≅ 0.4 M
Answer:
a=28600J; b=90.6 J/K; c=402 torr
Explanation:
(a) considering the data given
Vapour pressure P1 =0 at Temperature T1 = 42.43˚C,
Vapour pressure P2 = 273.15 at Temperature T2= 315.58 K)
Using the Clausius-Clapeyron Equation
ln (P2/P1) = (ΔH/R)(1/T2 - 1/T1)
In 760/140 = ΔH/8.314 J/mol/K × (1/315.58K -- 1/273.15K)
ΔH vap= +28.6 kJ/mol or 28600J
(b) using the Equation ΔG°=ΔH° - TΔS to solve forΔS.
Since ΔG at boiling point is zero,
ΔS =(ΔH°vap/Τb)
ΔS = 28600 J/315.58 K
= 90.6 J/K
(c) using ln (P2/P1) = (ΔH/R)(1/T2 - 1/T1)
ln P298 K/1 atm = 28600 J/8.314 J/mol/K × (1/298.15K - 1/315.58K)
P298 K = 0.529 atm
= 402 torr