1. Yes.
Since, to be a triangle, the sum of the smallest two sides must be greater than the third side, the triangle can be formed.
3 + 22 > 24
2. This triangle is a right triangle.
180 - 60 - 30 = 90
90 degrees is a right angle.
Hope this helps!
"Step 1: log 3^(x+1) = log15" is the step among the following choices given in the question that she did incorrectly. The correct option among all the options that are given in the question is the first option or option "A". I hope that this is the answer that has actually come to your desired help.
Step-by-step explanation:
50(4+6)=500
hope it helps you get
The points you found are the vertices of the feasible region. I agree with the first three points you got. However, the last point should be (25/11, 35/11). This point is at the of the intersection of the two lines 8x-y = 15 and 3x+y = 10
So the four vertex points are:
(1,9)
(1,7)
(3,9)
(25/11, 35/11)
Plug each of those points, one at a time, into the objective function z = 7x+2y. The goal is to find the largest value of z
------------------
Plug in (x,y) = (1,9)
z = 7x+2y
z = 7(1)+2(9)
z = 7+18
z = 25
We'll use this value later.
So let's call it A. Let A = 25
Plug in (x,y) = (1,7)
z = 7x+2y
z = 7(1)+2(7)
z = 7+14
z = 21
Call this value B = 21 so we can refer to it later
Plug in (x,y) = (3,9)
z = 7x+2y
z = 7(3)+2(9)
z = 21+18
z = 39
Let C = 39 so we can use it later
Finally, plug in (x,y) = (25/11, 35/11)
z = 7x+2y
z = 7(25/11)+2(35/11)
z = 175/11 + 70/11
z = 245/11
z = 22.2727 which is approximate
Let D = 22.2727
------------------
In summary, we found
A = 25
B = 21
C = 39
D = 22.2727
The value C = 39 is the largest of the four results. This value corresponded to (x,y) = (3,9)
Therefore the max value of z is z = 39 and it happens when (x,y) = (3,9)
------------------
Final Answer: 39
Answer:
9,0 0,9 -9,0 0,-9
Step-by-step explanation:
up down left right