Answer:
A collapse of the population is rotting, food is not enough and livelihoods have become unfeasible to decrease the number of individuals again.
Another way is to generate mutations to generate a species more vulnerable to decreasing numbers.
In this way the overpopulation is controlled.
Explanation:
In ecosystems, if an increased population breaks the balance of this and begins a new constant adaptation of the extinction of some and overpopulation of others, which may be some chains break or remain unstable.
Answer:
runoff is he draining away of water (or substances carried in it) from the surface of an area of land, a building or structure, etc.
Explanation:
I think you're talking about Ribosomes?
This is the organelle responsible for protein synthesis.
Molarity is given as,
Molarity = Moles / Volume of Solution ----- (1)
Also, Moles is given as,
Moles = Mass / M.mass
Substituting value of moles in eq. 1,
Molarity = Mass / M.mass × Volume
Solving for Mass,
Mass = Molarity × M.mass × Volume ---- (2)
Data Given;
Molarity = 2.8 mol.L⁻¹
M.mass = 101.5 g.mol⁻¹
Volume = 1 L (I have assumed it because it is not given)
Putting values in eq. 2,
Mass = 2.8 mol.L⁻¹ × 101.5 g.mol⁻¹ × 1 L
Mass = 284.2 g of CuF₂
Answer:
(a) False;
(b) False;
(c) False;
(d) True.
Explanation:
(a) When equilibrium is reached, the forward reaction rate becomes equal to the reverse reaction rate, that's why the molarity of each species remains constant, but reactions don't stop.
(b) According to the principle of Le Chatelier, an increase in molarity of either reactants or products would lead to a disturbance of equilibrium. This disturbance would lead to the shift of equilibrium towards the side which would minimize such a disturbance.
(c) Equilibrium constant is only temperature-dependent, it's independent of molarity, pressure, volume etc. of any species present in the reaction.
(d) The greater the initial molarity of reactants, the more products can be formed, e. g., since the ratio of products to reactants should be kept constant, the larger the amount of reactants, the greater the amount of products formed to keep a constant ratio.