Have a clean workspace, always wear clean gloves, never reuse or leave Lab wearing gloves, sanitize!
A. The mass of one mole of the virus is calculated by multiplying the mass of a single virus by the Avogadro's number which is equal to 6.022 x 10^23. Performing this operation,
mass = (9.0 x 10^-12 mg)(6.022 x 10^23) = 5.42 x 10^12 mg
In correct number of significant figures, the answer would only have to be 5.4 x 10^12 mg.
b. The number of moles of the virus that will have the same mass as the oil tanker is calculated by dividing the mass of the oil tanker by the mass of one mole of the virus. Note that doing division, both would have to have the same units.
n = (3.0 x 10^7 kg) / (5.4 x 10^12 mg)(1 g/1000 mg)(1 kg/1000 g)
Simplifying,
n = 6
In correct number of significant figures, the answer is 6.0.
Answer:
to find out how somethings work
Explanation:
The pressure exerted by 0.400 moles of carbon dioxide in a 5.00 Liter container at 25 °C would be 1.9563 atm or 1486.788 mm Hg.
<h3>The ideal gas law</h3>
According to the ideal gas law, the product of the pressure and volume of a gas is a constant.
This can be mathematically expressed as:
pv = nRT
Where:
p = pressure of the gas
v = volume
n = number of moles
R = Rydberg constant (0.08206 L•atm•mol-1K)
T = temperature.
In this case:
p is what we are looking for.
v = 5.00 L
n = 0.400 moles
T = 25 + 273
= 298 K
Now, let's make p the subject of the formula of the equation.
p = nRT/v
= 0.400 x 0.08206 x 298/5
= 1.9563 atm
Recall that: 1 atm = 760 mm Hg
Thus:
1.9563 atm = 1.9563 x 760 mm Hg
= 1486.788 mm Hg
In other words, the pressure exerted by the gas in atm is 1.9563 atm and in mm HG is 1486.788 mm Hg.
More on the ideal gas law can be found here: brainly.com/question/28257995
#SPJ1