Answer:

Explanation:
given,
frequency of tuba.f = 64 Hz
Speed of train approaching, v = 8.50 m/s
beat frequency = ?
using Doppler's effect formula

v_s is the velocity of the source
v is the speed of sound, v = 340 m/s
now,

f' = 65.64 Hz
now, beat frequency is equal to



hence, beat frequency is equal to 1.64 Hz
Explanation:
1. The entire span of possible sound waves is called the acoustic spectrum. It is subdivided into infrasonic sounds, audible sounds, and ultrasonic sounds.
2. The difference between a musical note and another note at twice the frequency is called an octave.
3. Sound intensity varies with the inverse square of distance.
Answer:
1531 m
Explanation:
The motion of the jet ski is an uniformly accelerated motion, so we can find the distance travelled by using the following suvat equation:

where
s is the distance
u is the initial velocity
t is the time
a is the acceleration
For the jet ski in this problem,

t = 35 s
u = 0 (it starts from rest)
Solving for s, we find the distance travelled:

I think the answer is discovery.
Hi there!
The maximum deformation of the bumper will occur when the car is temporarily at rest after the collision. We can use the work-energy theorem to solve.
Initially, we only have kinetic energy:

KE = Kinetic Energy (J)
m = mass (1060 kg)
v = velocity (14.6 m/s)
Once the car is at rest and the bumper is deformed to the maximum, we only have spring-potential energy:

k = Spring Constant (1.14 × 10⁷ N/m)
x = compressed distance of bumper (? m)
Since energy is conserved:

We can simplify and solve for 'x'.

Plug in the givens and solve.
