Answer:
![ca^{2 + }](https://tex.z-dn.net/?f=ca%5E%7B2%20%2B%20%7D%20)
Explanation:
In all atoms, the number of protons = number of electrons, as a result the atom is neutral. Losing or gaining electrons will make the atom electrically charged and we call an electrically charged atom an ion.
Ca 2+ would be the symbol because losing two negative electrons makes calcium's nucleus more positive by two protons.
Answer:
![2.78\times 10^{-35}\ \text{kg m/s}](https://tex.z-dn.net/?f=2.78%5Ctimes%2010%5E%7B-35%7D%5C%20%5Ctext%7Bkg%20m%2Fs%7D)
![6.178\times 10^{-34}\ \text{m/s}](https://tex.z-dn.net/?f=6.178%5Ctimes%2010%5E%7B-34%7D%5C%20%5Ctext%7Bm%2Fs%7D)
![0.31\times 10^{-4}\ \text{m/s}](https://tex.z-dn.net/?f=0.31%5Ctimes%2010%5E%7B-4%7D%5C%20%5Ctext%7Bm%2Fs%7D)
Explanation:
= Uncertainty in position = 1.9 m
= Uncertainty in momentum
h = Planck's constant = ![6.626\times 10^{-34}\ \text{Js}](https://tex.z-dn.net/?f=6.626%5Ctimes%2010%5E%7B-34%7D%5C%20%5Ctext%7BJs%7D)
m = Mass of object
From Heisenberg's uncertainty principle we know
![\Delta x\Delta p\geq \dfrac{h}{4\pi}\\\Rightarrow \Delta p\geq \dfrac{h}{4\pi\Delta x}\\\Rightarrow \Delta p\geq \dfrac{6.626\times 10^{-34}}{4\pi\times 1.9}\\\Rightarrow \Delta p\geq 2.78\times 10^{-35}\ \text{kg m/s}](https://tex.z-dn.net/?f=%5CDelta%20x%5CDelta%20p%5Cgeq%20%5Cdfrac%7Bh%7D%7B4%5Cpi%7D%5C%5C%5CRightarrow%20%5CDelta%20p%5Cgeq%20%5Cdfrac%7Bh%7D%7B4%5Cpi%5CDelta%20x%7D%5C%5C%5CRightarrow%20%5CDelta%20p%5Cgeq%20%5Cdfrac%7B6.626%5Ctimes%2010%5E%7B-34%7D%7D%7B4%5Cpi%5Ctimes%201.9%7D%5C%5C%5CRightarrow%20%5CDelta%20p%5Cgeq%202.78%5Ctimes%2010%5E%7B-35%7D%5C%20%5Ctext%7Bkg%20m%2Fs%7D)
The minimum uncertainty in the momentum of the object is ![2.78\times 10^{-35}\ \text{kg m/s}](https://tex.z-dn.net/?f=2.78%5Ctimes%2010%5E%7B-35%7D%5C%20%5Ctext%7Bkg%20m%2Fs%7D)
Golf ball minimum uncertainty in the momentum of the object
![m=0.045\ \text{kg}](https://tex.z-dn.net/?f=m%3D0.045%5C%20%5Ctext%7Bkg%7D)
Uncertainty in velocity is given by
![\Delta p\geq m\Delta v\geq 2.78\times 10^{-35}\\\Rightarrow \Delta v\geq \dfrac{2.78\times 10^{-35}}{m}\\\Rightarrow \Delta v\geq \dfrac{2.78\times 10^{-35}}{0.045}\\\Rightarrow \Delta v\geq 6.178\times 10^{-34}\ \text{m/s}](https://tex.z-dn.net/?f=%5CDelta%20p%5Cgeq%20m%5CDelta%20v%5Cgeq%202.78%5Ctimes%2010%5E%7B-35%7D%5C%5C%5CRightarrow%20%5CDelta%20v%5Cgeq%20%5Cdfrac%7B2.78%5Ctimes%2010%5E%7B-35%7D%7D%7Bm%7D%5C%5C%5CRightarrow%20%5CDelta%20v%5Cgeq%20%5Cdfrac%7B2.78%5Ctimes%2010%5E%7B-35%7D%7D%7B0.045%7D%5C%5C%5CRightarrow%20%5CDelta%20v%5Cgeq%206.178%5Ctimes%2010%5E%7B-34%7D%5C%20%5Ctext%7Bm%2Fs%7D)
The minimum uncertainty in the object's velocity is ![6.178\times 10^{-34}\ \text{m/s}](https://tex.z-dn.net/?f=6.178%5Ctimes%2010%5E%7B-34%7D%5C%20%5Ctext%7Bm%2Fs%7D)
Electron
![m=9.11\times 10^{-31}\ \text{kg}](https://tex.z-dn.net/?f=m%3D9.11%5Ctimes%2010%5E%7B-31%7D%5C%20%5Ctext%7Bkg%7D)
![\Delta v\geq \dfrac{\Delta p}{m}\\\Rightarrow \Delta v\geq \dfrac{2.78\times 10^{-35}}{9.11\times 10^{-31}}\\\Rightarrow \Delta v\geq 0.31\times 10^{-4}\ \text{m/s}](https://tex.z-dn.net/?f=%5CDelta%20v%5Cgeq%20%5Cdfrac%7B%5CDelta%20p%7D%7Bm%7D%5C%5C%5CRightarrow%20%5CDelta%20v%5Cgeq%20%5Cdfrac%7B2.78%5Ctimes%2010%5E%7B-35%7D%7D%7B9.11%5Ctimes%2010%5E%7B-31%7D%7D%5C%5C%5CRightarrow%20%5CDelta%20v%5Cgeq%200.31%5Ctimes%2010%5E%7B-4%7D%5C%20%5Ctext%7Bm%2Fs%7D)
The minimum uncertainty in the object's velocity is
.
Answer:
v(t)= (d/dt)x(t)
Explanation:
The instantaneous velocity of an object is the limit of the average velocity as the elapsed time approaches zero, or the derivative of x with respect to t. Like average velocity, instantaneous velocity is a vector with dimension of length per time. The instantaneous velocity at a specific time point t
0 is the rate of change of the position function, which is the slope of the position function
x
(
t
)
at t
0
.
At the end of the laps, the runner's displacement is zero.
A hurricane becomes more powerful by evaporating water from oceans