Answer:
It refracts when it hits the glass.
Answer:
125.83672 seconds
Explanation:
P = Power of the horse = 1 hp = 746 W (as it is not given we have assumed the horse has the power of 1 hp)
m = Mass of professor = 103 kg
g = Acceleration due to gravity = 9.8 m/s²
h = Height of professor = 93 m
Work done would be equal to the potential energy

Power is given by

The time taken by the horse to pull the professor is 125.83672 seconds
Answer:
10.6 mA
Explanation:
t = time interval = 1.00 s
q = magnitude of charge on each ion = 1.6 x 10⁻¹⁹ C
n₁ = number of Na⁺ ions = 2.68 x 10¹⁶
q₁ = charge due to Na⁺ ions = n₁ q = (2.68 x 10¹⁶) (1.6 x 10⁻¹⁹) = 0.004288 C
n₂ = number of Cl⁻ ions = 3.92 x 10¹⁶
q₂ = charge due to Cl⁻ ions = n₂ q = (3.92 x 10¹⁶) (1.6 x 10⁻¹⁹) = 0.006272 C
i₁ = Current due to Na⁺ ions =
=
= 0.004288 A
i₂ = Current due to Cl⁻ ions =
=
= 0.006272 A
Current passing between the electrodes is given as
i = i₁ + i₂
i = 0.004288 + 0.006272
i = 0.01056 A
i = 10.6 x 10⁻³ A
i = 10.6 mA
As the plane falls the parabolic path remains directly below as the plane continues to fly over. This give more of an overview. When the package falls vertical acceleration happens as there is a vertical velocity as the package falls form high above. The downwards motion of gravity acts on the package if the approximated projectile motion ignoring air resistance.