Momentum is a term used to quantify the motion of an object has. It is calculated as the the product of the object's mass and the velocity. It is expressed as:
Momentum = m x v
Momentum = 50 kg x 5 m/s
Momentum = 250 kg m/s
Therefore, the correct answer is the last option.
Answer:
<em><u>M</u></em><em><u>a</u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u>m</u></em><em><u>a</u></em><em><u>t</u></em><em><u>i</u></em><em><u>c</u></em><em><u>a</u></em><em><u>l</u></em><em><u>l</u></em><em><u>y</u></em><em><u>:</u></em>
That will be
<em>=</em><em> </em><em>1</em><em>5</em><em>0</em><em>0</em><em> </em><em>x</em><em> </em><em>1</em><em>5</em><em> </em><em>x</em><em> </em><em>4</em><em>5</em><em>0</em><em>0</em>
<em>=</em><em> </em><em><u>1</u></em><em><u>0</u></em><em><u>1</u></em><em><u>,</u></em><em><u>2</u></em><em><u>5</u></em><em><u>0</u></em><em><u>,</u></em><em><u>0</u></em><em><u>0</u></em><em><u>0</u></em>
Answer:

Explanation:
An object is at rest along a slope if the net force acting on it is zero. The equation of the forces along the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m being the mass of the object, g the acceleration of gravity,
the angle of the slope
is the frictional force, with
being the coefficient of friction and R the normal reaction of the incline
The equation of the forces along the direction perpendicular to the slope is

where
R is the normal reaction
is the component of the weight perpendicular to the slope
Solving for R,

And substituting into (1)

Re-arranging the equation,

This the condition at which the equilibrium holds: when the tangent of the angle becomes larger than the value of
, the force of friction is no longer able to balance the component of the weight parallel to the slope, and so the object starts sliding down.
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?
Answer:
Explanation:
Electric forces exist among stationary electric charges; both electric and magnetic forces exist among moving electric charges. ... The magnetic force between two moving charges may be described as the effect exerted upon either charge by a magnetic field created by the other.