If an experiment is conducted such that an applied force is exerted on an object, a student could use the graph to determine the net work done on the object.
The graph of the net force exerted on the object as a function of the object’s distance traveled is attached below.
- A student could use the graph to determine the net work done on the object by Calculating the area bound by the line of best fit and the horizontal axis from 0m to 5m
For more information on work done, visit
brainly.com/subject/physics
The rays of light coming from the Sun are parallel to each other, so when they are reflected by the concave piece of glass (which acts as a concave mirror) they converge into the focus of the mirror, which is

The radius of curvature of a concave mirror is twice its focal length, so in this case it is:
Answer:
Explanation:
according to third equation of motion
2as=vf²-vi²
vf²=2as+vi²
vf=√2as+vi²
vf=√2as+vi
vf=√2*2*4+3
vf=√16+3
vf=4+3=7
so final velocity is 7 m/s
Answer:

Explanation:
The time the stone takes to fall can be calculated considering only the vertical component with the formula:

Taking the inital height as 0m and downward direction positive, since it departs from (vertical) rest we have:

Which gives us a time:

Horizontally, on that time the stone travelled a distance x=10m, which means its horizontal speed was:

Since <u>this speed is the tangential velocity</u> while whirling, the centripetal acceleration of the stone was:
