Answer:

Explanation:
A galvanic cell is composed of two electrodes immersed in a suitable electrolyte and connected via a salt bridge. One of the electrodes serves as a cathode where reduction or gain of electrons takes place. The other half cell functions as an anode where oxidation or loss of electrons occurs.
The representation is given by writing the anode on left hand side followed by its ion with its molar concentration. It is followed by a salt bridge. Then the cathodic ion with its molar concentration is written and then the cathode.
As it is given that cadmium acts as anode, it must be on the left hand side and copper must be on right hand side.

The complete question is as follows: Which statement describes the way in which energy moves between a system reacting substances in the surroundings.
A) molecule Collisions transfer thermal energy between the system and its surroundings
B) The thermal energy of the system and it’s surroundings increase
C) The potential energy of the system and it’s surroundings increases
D) molecular collisions create energy that is then released into the surroundings
Answer: The statement, molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
Explanation:
When there will occur an increase in kinetic energy of molecules then there will occur more number of collisions.
When kinetic energy between these molecules tends to decrease then they will release heat energy into their surroundings.
As a result, it means that molecule collisions transfer thermal energy between the system and its surroundings.
Thus, we can conclude that the statement molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
<u>Answer:</u>
<u>For Part A:</u> The partial pressure of Helium is 218 mmHg.
<u>For Part B:</u> The mass of helium gas is 0.504 g.
<u>Explanation:</u>
We are given:

To calculate the partial pressure of helium, we use the formula:

Putting values in above equation, we get:

Hence, the partial pressure of Helium is 218 mmHg.
To calculate the mass of helium gas, we use the equation given by ideal gas:
PV = nRT
or,

where,
P = Pressure of helium gas = 218 mmHg
V = Volume of the helium gas = 10.2 L
m = Mass of helium gas = ? g
M = Molar mass of helium gas = 4 g/mol
R = Gas constant = 
T = Temperature of helium gas = 283 K
Putting values in above equation, we get:

Hence, the mass of helium gas is 0.504 g.
Answer:
carbon
Explanation:
tbh im not sure just guessing