Answer:
89°C
Explanation:
Combined Gas Law (P₁V₁)/T₁ = (P₂V₂)/T₂
(1.25 atm)(450 mL)/(65°C) = (0.89 atm)(865 mL)/T₂
8.653846154 = 769.85/T₂
T₂ = 769.85/8.653846154
T₂ = 88.96044444 = 89°C
The answer is 615.91 grams of <span>n2f4
Solution:
225g F2 x [(1molF2)/(38gramsF2)] x [</span>(1molF2)/(1molN2F4)] x [(104.02 grams N2F4)/(1molN2F4)]
=615.91 grams
I think it might be A muscles help move nutrients through the body to the stomach
Answer: I & III
Explanation: Solutes are the substances which are minimum in quantity and which is required to dissolve in the solvent (which is larger in quantity) in order to make a solution.
In the asked question, it is given that the water is the solvent and from the given solutes we have to pick which would make an aqueous solution with the highest concentration of solute possible.
Thus the most appropriate answers could be the Ammonia and hexanol which can make the highest possible concentration of solute as ammonia is the gas which is highly soluble in water and hexanol is an alcohol which has an affinity for water. Thus the correct option is I & III
Answer:
a) 1.866 × 10 ⁻¹⁹ J b) 3.685 × 10⁻¹⁹ J
Explanation:
the constants involved are
h ( Planck constant) = 6.626 × 10⁻³⁴ m² kg/s
Me of electron = 9.109 × 10 ⁻³¹ kg
speed of light = 3.0 × 10 ⁸ m/s
a) the Ek ( kinetic energy of the dislodged electron) = 0.5 mu²
Ek = 0.5 × 9.109 × 10⁻³¹ × ( 6.40 × 10⁵ )² = 1.866 × 10 ⁻¹⁹ J
b) Φ ( minimum energy needed to dislodge the electron ) can be calculated by this formula
hv = Φ + Ek
where Ek = 1.866 × 10 ⁻¹⁹ J
v ( threshold frequency ) = c / λ where c is the speed of light and λ is the wavelength of light = 358.1 nm = 3.581 × 10⁻⁷ m
v = ( 3.0 × 10 ⁸ m/s ) / (3.581 × 10⁻⁷ m ) = 8.378 × 10¹⁴ s⁻¹
hv = 6.626 × 10⁻³⁴ m² kg/s × 8.378 × 10¹⁴ s⁻¹ = 5.551 × 10⁻¹⁹ J
5.551 × 10⁻¹⁹ J = 1.866 × 10 ⁻¹⁹ J + Φ
Φ = 5.551 × 10⁻¹⁹ J - 1.866 × 10 ⁻¹⁹ J = 3.685 × 10⁻¹⁹ J